
User's manual for

Writer2LaTeX, Writer2BibTeX, Writer2xhtml and Calc2xhtml

version 1.0.2

© 2002–2010 Henrik Just

cmTable of Contents

1 Introduction 3

2 Using the export filters 7

3 Using the command line utility 40

4 Configuration 46

5 The LaTeX package ooomath.sty 79

6 Using Writer2LaTeX from another application 81

7 Troubleshooting 90

1. Introduction
1.1. What is Writer2LaTeX?

Writer2LaTeX is a utility to convert OpenDocument text and spreadsheet documents1 – in partic-
ular documents containing formulas – into other formats.

Actually it is a collection of four converters:

• Writer2LaTeX converts OpenDocument text documents to LaTeX 2e, and works together
with...

• Writer2BibTeX which extracts bibliographic data from an OpenDocument text document
and converts it to BibTeX format.

• Writer2xhtml converts OpenDocument text documents to XHTML 1.0 strict or XHTML
1.1 + MathML 2.0, using CSS2 to convert style information.

• Calc2xhtml converts OpenDocument spreadsheet documents to XHTML 1.0 strict, using
CSS2 to convert style information.

Although Writer2LaTeX is a general OpenDocument converter, it is primarily designed for
use with OpenOffice.org and it's derivatives (e.g. StarOffice or NeoOffice). You can use
Writer2LaTeX

• ...as an export filter for OpenOffice.org 2.2 or later2, or equivalent versions of StarOffice or

1In addition, Writer2LaTeX supports the old file formats for OpenOffice.org 1.x Writer and Calc.
2For OpenOffice.org 2.0.4–2.1, you can use Writer2LaTeX 0.5.0.2, for OpenOffice.org 2.0–2.0.3, you can use

NeoOffice3.

• ...as a command line utility, independent of OpenOffice.org.

• ...as a Java library providing conversions from OpenDocument for other Java programs.

Writer2LaTeX is a Java application, and thus should work on any platform that supports Java.
You need Sun's Java 2 Virtual Machine (Runtime Environment), version 5 or later4. You can
download this from http://www.java.com. Writer2LaTeX also works with OpenJDK 6, but
has not been tested with other java implementations.

This user's manual will explain how to install and use Writer2LaTeX.

Note: In this manual OOo is used as an abbreviation of OpenOffice.org/StarOffice/NeoOffice.

1.2. More about Writer2LaTeX and Writer2BibTeX

Writer2LaTeX is quite flexible: It can take advantage of several LaTeX packages, such as
hyperref, pifont, ulem. It can create customized LaTeX code based on the styles and text
in the document. Also it supports 25 different languages, latin, greek and cyrillic scripts and 8
input-encodings.

The flexibility makes it possible to use Writer2LaTeX from several philosophies:

Writer2LaTeX 0.5, for OpenOffice.org 1.1, you can use Writer2LaTeX 0.4.
3Unfortunately these variants does not use the same version numbers. For StarOffice you should use StarOffice 8,

Product Update 6 or later. For NeoOffice I don't know how the version numbering relates to that of OpenOffice.org.
4The source is compatible with the legacy Java 1.4.

• You can use LaTeX as a typesetting engine for your OOo documents: Writer2LaTeX can be
configured to create a LaTeX document with as much formatting as possible preserved.
Note that the resulting LaTeX source will be readable, but not very clean.

Be aware that even though Writer2LaTeX tries hard to cope with any document, you will
only get good results for well structured documents, ie. documents that are formatted
using styles. For other documents you will find that Writer2LaTeX uses the principle
garbage in – garbage out!

• If you need to continue the work on your document in LaTeX your primary interest may
be the content rather than the formatting. Writer2LaTeX can instructed to produce a La-
TeX document which strips most of the formatting and hence produces a clean LaTeX
source from any source document.

• Traditionally, LaTeX documents are written by hand using a text editor. Using a graphi-
cal frontend like LyX provides a more user friendly alternative. A companion extension
named Writer4LaTeX is in development and will provide the tools to make you use OOo
as a graphical frontend for LaTeX.

1.3. More about Writer2xhtml and Calc2xhtml

The primary goal for Writer2xhtml and Calc2xhtml is to provide standards compliant xhtml doc-
uments which can be customized to your specific needs.

• Standards compliance is necessary to ensure consistent results when the document is
viewed in different browsers. It is also vital to ensure that the created document can

be processed further by other tools.

• Customization means that you can control important aspects about the conversion. In
particular you can control the style of the document:

◦ You can let Writer2xhtml convert the style information in the source document and
thus get an xhtml document that has the same general appearance as the original, but
is adapted to an online environment.

◦ You can create a document that adapts the style of the document to your own CSS
style sheet.

2. Using the export filters
2.1. Installing of the filters

Writer2LaTeX can work as an export filter for OOo Writer. This requires OpenOffice.org 2.2 or
later, or equivalent versions of StarOffice or NeoOffice.

Two OOo extensions are provided:

• writer2latex.oxt installs the LaTeX and BibTeX export filters in Writer

• writer2xhtml.oxt installs the xhtml export filters in Writer and Calc

The two extensions are independent, you can install one or both depending on your needs.

Note: OOo 2.0.4 and later already includes Writer2LaTeX version 0.4 (LaTeX and BibTeX export
only). If you install version 1.0, the built-in version will be hidden (to avoid confusion). If you
uninstall version 1.0, the original version will reappear.

Also note: Before you install the Writer2LaTeX extensions, you need to set up OOo to use Java.
You can configure this in OOo under Tools – Options. Of course this requires that you have
installed a Java runtime environment on your system.

Important: If you have installed Writer2LaTeX 0.5, you must uninstall this version first. (This is
not necessary if you have installed Writer2LaTeX 0.5.0.2.)

The extensions are installed and uninstalled using the Extension Manager in OOo. If you need
instructions about using the Extension Manager, see

http://extensions.services.openoffice.org/resources/user/howto_install

2.2. Using the filters

The filters provided by Writer2LaTeX are all export filters. This means that the filters are to be
found in the File – Export menu in Writer or Calc.

Note: As Writer2LaTeX does not provide corresponding import filters, you should always save
in OpenDocument format as well!

2.3. Using Writer2LaTeX and Writer2BibTeX

To export a Writer document to LaTeX, choose LaTeX 2e in the export dialog.

After you have typed in a file name, an options dialog will open:

http://extensions.services.openoffice.org/resources/user/howto_install

The individual options are explained below. Click Export to initiate the export or Cancel to close
the dialog without exporting the document.

2.3.1. General options

LaTeX format

Conceptually, Writer and LaTeX are quite different. A LaTeX document is usually based on a
certain document class, that determines the general layout and formatting of the document. In
addition the use of several LaTeX packages may change various aspects of the LaTeX document.

The result of a conversion into LaTeX will thus depend very much on which LaTeX packages are
used and how much formatting it is desired to preserve.

Writer2LaTeX offers a number of default formats, all based on the standard LaTeX document
class article. Each of the formats defines the LaTeX packages to use and the handling of format-
ting.

• Ultra-clean article will create a very basic LaTeX article, with almost no formatting pre-
served.

• Clean article will also create a default LaTeX article, but does preserve some basic for-
matting from the Writer document, such as boldface, color and hyperlinks.

• Default creates a LaTeX article preserving as much formatting as it is possible without
any significant deviations from LaTeX standards.

• Print optimized on the other hand creates a LaTeX article preserving as much formatting
as possible. The result will resemble the Writer document, but will look slightly different
from a standard LaTeX article (and the LaTeX code will be less readable).

• Screen optimized (pdf) also creates a LaTeX article preserving most of the formatting,
but optimized for screen viewing (using the package pdfscreen) rather than printing.

• Custom is a user defined format, see section 2.7.

Advanced users can extend the list with further formats using configuration packages, see sec-
tion 2.8.

Backend

When processing a LaTeX document, the final result is a document in a certain backend format.
The handling of certain aspects of the document, in particular graphics, depends on the backend.
With this option you can select the backend format.

• Generic will create a LaTeX document that can be processed with any flavour of LaTeX,
usually with a file in DVI format as the result. Graphics is not supported with this back-
end.

• Pdf (pdfTeX) will create a LaTeX document that is suitable for processing with pdfLaTeX.
Graphics are converted to a format that can be included in pdf files.

• Postscript (dvips) will create a LaTeX document that is suitable for generating documents
in Postscript format, usually by post processing with dvips. Graphics will be converted to
Encapsulated postscript format.

• Unspecified will create a LaTeX document with no particular backend in mind. All graph-
ics will be exported in the original format, and it is up to the user to handle them.

If you have selected the format Screen optiomized (pdf), you cannot select the backend, which will
always be pdf.

Encoding

A LaTeX document is a text file, which always uses a certain character encoding. The character
encoding is important if the LaTeX file is going to be edited in a text editor: You should select
an encoding that is supported by your text editor. This setting is also important to get optimal
support for international characters: If you for example use pdfTeX, searching in the final pdf
document will only work for characters supported by the selected character encoding.

Currently, Writer2LaTeX supports 8 different encodings which together are suitable for a large
number of languages written with either latin, greek or cyrillic letters. Currently asian (CJK) and
bidirectional (CTL) scripts are not supported.

Enable multilingual support

If you check this option, all the language settings in the Writer document will be exported to
LaTeX. Sometimes the language settings in a Writer document are not correct, so if you have a
document that is written in one language only you may want to uncheck this option. This will
produce a cleaner LaTeX file because you may avoid a large number of language selections.

Use greek letters as symbols

Greek letters used in latin text are often used as symbols, such as the number π or the word γ-

radiation. By checking this option, all greek letters used within latin or cyrillic text will be treated
as mathematical symbols, which will produce a slightly better result – and also not require that
greek text fonts are available in the LaTeX installation. This option has no effect on greek text
(provided the language is set correctly in the Writer document).

Support additional symbols

If you select this option, LaTeX will load some additional packages containing support for var-
ious symbols: A better looking euro-symbol, phonetic characters, dingbats and various other
symbols and geometric shapes.

2.3.2. Bibliography options

Use BibTeX for bibliography

Usually the bibliography in a LaTeX document is generated by the companion program BibTeX.
If you check this option, all the bibliographic references will be exported to BibTeX format for
later processing with the BibTeX program.

BibTeX style

If you use BibTeX, you should also select a BibTeX style to be used when generating the bibliog-
raphy. Select one of the predefined styles or type the name of any BibTeX style which is available
in your LaTeX installation.

2.3.3. Files options

Wrap long lines

Checking this option wraps long lines in the generated LaTeX file. This enhances the readability
if the file is later edited in a text editor. If you use a text editor that wraps lines automatically,
you should uncheck this option.

After characters

If you choose to wrap long lines, they will be wrapped as soon as possible after this number of
characters.

Split document at linked sections

Checking this option will create separate LaTeX files for sections in the Writer document with
linked content. This can be an advantage if the LaTeX document is later edited in a text editor.

Split document at top level sections

Checking this option will create separate LaTeX files for all top level sections in the Writer doc-
ument (but not for nested sections).

Save images in subdirectory

Writer2LaTeX normally saves images associated with the document in the same directory as the
LaTeX document. If the document contains a large number of images it may be more convenient
to save the images in a separate subdirectory. This option will create a subdirectory with the
same name as the LaTeX document to store the images.

2.3.4. Options for special content

Export notes

This option determines how to export notes (also known as annotations) in the Writer document

• Do not export will ignore the notes

• As comments will export the notes as comments in the LaTeX file. They will not be visible
in the final document after processing with LaTeX.

• As marginal notes will put the notes in the margin of the document. In this case they will
be visible in the final document, but beware that the notes will be lost if the margin is too
narrow.

• As pdf annotations will export the notes as pdf text annotations. If the pdf viewer sup-
ports it, you will be able to read the notes. Adobe Reader displays text annotations with a
yellow icon, which allows you to open and read the note. If the document is not processed
with pdfTeX, the notes will be converted to marginal notes.

Export document properties (metadata)

If you check this option, Writer2LaTeX will export the title, author and date of the document as
found under File – Properties. Furthermore, if you have chosen pdf as the backend, the title,
author, subject and keywords will be exported to the pdf document and will be viewable if the
pdf viewer supports it. If the option is not checked, only the title will be exported.

2.3.5. Options for figures and tables

Use original image size

Often images in a Writer document are scaled up or down from their original size. Normally
the same scaling will be used in the LaTeX document, but if you select this option, the original
(unscaled) image size will be used.

Optimize simple tables

Normally Writer2LaTeX will generate tables with the same column widths as in the original
document. For tables with simple content it may be more desirable to create tables which are as
narrow as possible, with only one line of text per cell. Compare the table

Simple content Simple content

Simple content Simple content

to the optimized table

Simple content Simple content

Simple content Simple content

If you check this option, Writer2LaTeX will try to optimize tables.

Maximum width in characters

If you have chosen to optimize simple tables, you have to specify the maximum width of the
table, measured in the number of characters. If you for example set the number to 50, only tables
with a total width of 50 or fewer characters will be optimized.

Float tables

In Writer you can either choose that the rows of a table must be kept together on one page or
that the table may split across page breaks. Keeping a table on one page may be desirable to
increase the readability of the table, but it may also leave large white gaps at the bottom of the
page. In LaTeX this problem is solved with floating tables: A table can automatically move to
another position which fixes the whitespace problem. If you check this option, all tables that are
not allowed to break across pages are exported as floating tables.

Float figures

A similar option is available for figures (graphics, text boxes). If you check this option, figures
are converted to floating figures which can move in the document to reduce whitespace. This will
not affect figures anchored as character.

Float placement

If you choose to let either tables or figures float, use this option to specify the placement of the
floats:

• Top or bottom of page will place the floats either at the top or the bottom of a page.

• Top of page will place floats at the top of a page.

• Bottom of page will place floats at the top of a page.

• Here or top of page will place floats at their original position, if there is room left on the
page, and otherwise at the top of a page.

• Here or bottom of page will place floats at their original position, if there is room left on
the page, and otherwise at the bottom of a page.

In all cases it might happen that LaTeX creates some special pages which only contains floats.
This will usually be the case if there are many floats compared to the amount of text.

2.3.6. AutoCorrect options

Ignore hard page breaks

Hard (or manual) page breaks are often used to optimize page breaks in the final editing of a
document. In this case you will probably not want to export these page breaks, as LaTeX creates
page breaks that are quite different from the page breaks in Writer. If you select this option, hard

page breaks will be ignored when exporting the document.

Ignore hard line breaks

For similar reasons, you can select this option to ignore hard (manual) line breaks during export.

Ignore empty paragraphs

Empty paragraphs are sometimes used a simple means to create vertical spacing in Writer. In
a well-structured document, an empty paragraph is probably a mistake. Hence you can select
this option to ignore empty paragraphs in the document in the export. If you do not select the
option, an empty paragraph is exported as vertical space.

Ignore double spaces

For similar reasons you can choose to ignore two or more spaces in a row using this option.

2.4. Using Writer2BibTeX

Normally you would export the bibliographic data to BibTeX as part of the export to LaTeX, but
you may also export the bibliographic data alone. To do this, choose BibTeX in the export dialog.
All bibliographic data in the document will be extracted and stored in a BibTeX file which can
later be used by e.g. LaTeX documents.

2.5. Using Writer2xhtml

To export a Writer document to xhtml, choose one of the following formats in the export dialog:

• XHTML 1.0 strict will create an xhtml file which is compatible with the older HTML 4
standard. You can thus expect that the result will be viewable with any (modern) browser,
but note that mathematical formulas are not supported.

• XHTML 1.1 + MathML 2.0 will create an xhtml file which follows the standard for com-
bining xhtml with mathematical formulas, using MathML for the formulas. Unfortu-
nately, not all browsers support this.

• XHTML 1.1 + MathML 2.0 (xsl) will create a similar xhtml file, but using some XSL-
transformations provided by the World Wide Web Consortium (W3C), the result will be
viewable by a wider range of browsers, such as Internet Explorer with the MathPlayer
plugin. See http://www.w3.org/Math/XSL/ for details.

This is how W3C's Math Working Group recommends to put ”math on the web”.

In all cases, Writer2xhtml uses CSS to format the document, either by converting the original
formatting to CSS or by using a CSS style sheet selected by the user.

Note that the default file extension and the recommended MIME types varies with the output
format:

http://www.w3.org/Math/XSL/

Output format Default file extenstion MIME type

XHTML 1.0 .html text/html

XHTML 1.1 + MathML 2.0 .xhtml application/xhtml+xml

XHTML 1.1 + MathML 2.0
(with xsl transformation)

.xml application/xml

After you have typed in a file name, an options dialog will open:

The individual options are explained below. Click Export to initiate the export or Cancel to close
the dialog without exporting the document.

2.5.1. Style options

Use style

This option allows you to choose between various styles to apply to the xhtml document.

• Original formatting produces an xhtml document which uses the same style as the orig-
inal Writer document. The document will look quite similar to the original when viewed
in a browser.

• Chocolate, Midnight, Modern, Oldstyle, Steely, Swiss, Traditional and Ultramarine
formats the document with one of the 8 core styles provided by the World Wide Web
Consortium, see http://www.w3.org/StyleSheets/Core/.

• Custom is a user defined format. You can define your own style by providing a CSS style
sheet and a mapping from Writer styles to your CSS styles. See section 2.7 for details on
this.

Advanced users can extend the list with further styles using configuration packages, see section
2.8.

Scaling

http://www.w3.org/StyleSheets/Core/

Viewing the document in a web browser may require different dimensions (e.g. font sizes) than
the original Writer document. Using this option you can define a percentage used to scale all
dimensions, thus with the setting 140, all dimensions will be 40% larger than in the Writer docu-
ment. Depending on the style you have selected and on the option Use original image size, some
dimensions may be unaffected by this option.

Column scaling

This is a similar option, which only affects tables. Thus you can further widen or narrow the
columns of tables if you wish.

Convert units to px (pixels)

In Writer, font sizes are usually given in points and other dimensions in e.g. cm or inches. For
xhtml it is recommended to use the unit px instead, and using this option you can require that
all dimensions are converted to px. If you choose not to check this option,the original units will
always be used.

Use original image size

Often images in a Writer document are scaled up or down from their original size. Normally
the same scaling will be used in the xhtml document, but if you select this option, the original
(unscaled) image size will be used.

2.5.2. Options for special content

Export notes

If you select this option, notes (also known as annotations) in the Writer document are exported
as comments in the xhtml document. They will not be directly visible in the browser, only in the
xhtml source. If the option is not selected, notes are completely ignored.

Export document properties (Dublin Core Metadata)

If you select this option, the document properties (File – Properties) are exported using the
Dublin Core standard. See http://dublincore.org/ for details on this.

2.5.3. AutoCorrect options

Ignore hard line breaks

Sometimes hard (or manual) line breaks are used in Writer to optimize the placement of the line
breaks. Since line breaking in a browser is completely different, you may want to ignore all hard
line breaks by selecting this option.

Ignore empty paragraphs

Empty paragraphs are sometimes used a simple means to create vertical spacing in Writer. In a
well-structured document, an empty paragraph is probably a mistake. Hence you can select this

http://dublincore.org/

option to ignore empty paragraphs in the document in the export.

Ignore double spaces

For similar reasons you can choose to ignore two or more spaces in a row using this option.

2.5.4. File options

Split document at headings

To make a long Writer document easier to read in the browser, you can use this option to split
the document in several small files. Writer2xhtml will add a simple navigation panel that lets
you move between pages. The navigation links will be in the same language as the document
(as defined under Tools – Options – Language Settings – Languages)5. Note that this option
has no effect for headings inside tables.

Heading level

If you have chosen to split the document at headings, you can use this option to define at which
level splitting should occur. For example 2 to split the document at all headings of level 1 or 2.

Repeat heading levels

5At the moment only a small number of languages are supported: English, Danish, German, Finnish, French,
Spanish, Italian, Croatian, Russian and Ukrainian.

To help the reader to identify the current position within the document, you can use this op-
tion to repeat the parent headings whenever the document is split. If you for example split at
headings of level 3 and set this option to 2, the headings of level 1 and 2 will be repeated before
the heading of level 3, providing precise information as to where in the document the section
belongs.

Save images in subdirectory

Writer2xhtml normally saves images associated with the document in the same directory as the
xhtml document. If the document contains a large number of images it may be more convenient
to save the images in a separate subdirectory. This option will create a subdirectory with the
same name as the xhtml document to store the images.

2.6. Using Calc2xhtml

To export a Calc document to xhtml, choose XHTML 1.0 strict in the export dialog.

After you have typed in a file name, an options dialog will open:

The individual options are explained below (only where the differ from the options in
Writer2xhtml). Click Export to initiate the export or Cancel to close the dialog without exporting
the document.

2.6.1. Style options

Use style

This options works like in Writer2xhtml, except that the core styles from W3C are not displayed
(as they are not suitable for table documents).

2.6.2. Sheet options

Display hidden sheets

If you have chosen to hide some sheets in Calc, you can select this option if you want to display
them in the xhtml document anyway.

Display hidden rows and columns

The same applies, if you have chosen to hide some columns or rows in your spreadsheet.

Display filtered rows and columns

When you export the document, some rows or columns may be invisible because you have

applied a filter in Calc. If you select this option, the invisible rows and columns will be exported
to xhtml anyway.

Apply print ranges

If you check this option, the xhtml document will display the parts of the document which are
selected for printing using print ranges in Calc. The display in the browser will thus be similar
to what you get when you are printing the document from Calc. If the option is not checked, the
result will instead resemble what you see when you edit the document in Calc.

Use title as heading

If you check this option, Calc2xhtml will insert the document title (File – Properties – Descrip-
tion – Title) as heading at the top of the xhtml document.

Use sheet names as headings

If you check this option, Calc2xhtml will insert the name of each sheet as a heading above the
sheet in the xhtml document.

2.6.3. File options

Save sheets in separate files

If you select this option, Calc2xhtml will produce a separate file for each sheet, otherwise all

sheets will be exported to the same xhtml file. In any case, a simple navigation panel showing
all sheet names will be added.

2.7. Custom configuration

Each of the exports provides the possibility to use a custom format/style. Currently you have to
manually edit a configuration file to define it. All three exporters uses a configuration file in the
user installation folder for OOo.

• On unix-like systems this folder will usually be something like

home directory/.OpenOffice.org2/user

or

home directory/.OpenOffice.org/3/user

• On Windows it will usually be something like

C:\Documents and Settings\username\OpenOffice.org2\user

or

C:\Documents and Settings\username\OpenOffice.org\3\user

(Note that this directory may be hidden.)

Writer2LaTeX uses a file named writer2latex.xml, and Writer2xhtml and Calc2xhtml shares

a file named writer2xhtml.xml. These files are created automatically the first time you use the
custom configuration.

See section 4 for the structure of the configuration file.

2.8. Configuration packages

Advanced users may add further formats/styles to the lists in the export dialog. This is done us-
ing configuration packages, which are custom extensions to OOo containing further configurations
for Writer2LaTeX or Writer2xhtml.

A configuration package can contain:

• A configuration file for Writer2LaTeX or Writer2xhtml, see section 4.

• An xhtml template (Writer2xhtml only).

• An OOo template.

• An OOo registry file to glue the parts together.

The Writer2LaTeX distribution contains a sample configuration package xhtml-config-
sample.oxt that demonstrates this.

As a demonstration of the principles of configuration packages, you can install this into OOo
using the Extension Manager:

• If you export to xhtml, the dialog will show an additional entry Sample custom style in

the Style list.

• If you open Templates and Documents in OOo you will find a new folder xhtml-sample-
config. This folder contains a Writer template. If you create a document based on this
template, Sample custom style will be preselected when you export to xhtml.

You can create your own configuration package based on this sample. Use a zip utility to unpack
the extension. The following explains the individual parts of the sample configuration package.

2.8.1. The file description.xml

This files identifies the extension in OOo. For your own configuration package you should
choose a unique name for the identifier and a version number, eg.

<?xml version="1.0" encoding="UTF-8"?>

<description

xmlns="http://openoffice.org/extensions/description/2006"

xmlns:d="http://openoffice.org/extensions/description/2006">

<identifier value="MyConfigPackage" />

<version value="1.0" />

</description>

2.8.2. The files META-INF/manifest.xml and Paths.xcu

These files should be left unchanged.

2.8.3. The folder template

Put your OOo Writer template in this folder (it is recommended to use a subfolder with a de-
scriptive name). You may add more that one templates, and if you don't want to include a Writer
template you may leave it empty (do not delete the folder).

2.8.4. The folder config

Put your Writer2LaTeX/Writer2xhtml configuration in this folder. If you are using Writer2xhtml,
you should also put your xhtml template here.

2.8.5. The file Options.xcu

This is the central configuration file that glues together the content of the configuration package.
See the following example for an explanation of the structure.

<?xml version='1.0' encoding='UTF-8'?>

<oor:component-data oor:name="Options"

For LaTeX, Writer2xhtml should be replaced by Writer2LaTeX here:

oor:package="org.openoffice.da.Writer2xhtml"

xml:lang="en-US"

xmlns:oor="http://openoffice.org/2001/registry"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

XhtmlOptions may be replaced by XhtmlOptionsCalc or LaTeXOptions:

<node oor:name="XhtmlOptions">

<node oor:name="Configurations">

The configuration needs a unique name (you may define several configurations in the same
package):

<node oor:name="myconfig1" oor:op="replace">

You can define options which are normally set in the filter dialog. In that case you can lock
(disable) the corresponding parts of the dialogs. To do so, add a comma separated list of options
as value here. See below for the options that can be locked for each of the three filters.

<prop oor:name="LockedOptions" oor:type="xs:string">

<value></value>

</prop>

The DisplayName is the name displayed in the style/format list in the filter dialog.

<prop oor:name="DisplayName" oor:type="xs:string"
oor:localized="true">

<value>My Config Package</value>

</prop>

This path points to the configuration within the extension, you want to use:

<prop oor:name="ConfigURL" oor:type="xs:string">

<value>%origin%/config/myconfig.xml</value>

</prop>

This property (xhtml only) points to the xhtml template within the extension, you want to use.

<prop oor:name="TargetTemplateURL" oor:type="xs:string">

<value>%origin%/config/mytemplate.xhtml</value>

</prop>

</node>

</node>

The next section defines the OOo template you wish to connect with your configuration:

<node oor:name="Templates">

The entry needs a unique name:

<node oor:name="mytemplate1" oor:op="replace">

<prop oor:name="TemplateName" oor:type="xs:string">

The name of the OOo template is defined here (leave out .odt).

<value>MyWriterTemplate</value>

</prop>

<prop oor:name="ConfigName" oor:type="xs:string">

The configuration to link to is defined here.

<value>myconfig1</value>

</prop>

</node>

</node>

</node>

</oor:component-data>

2.8.6. About locked options

The options you can specify for the LockedOptions property depends on the filter. The following
list details which options are available to lock for each filter (see section 4).

Writer2LaTeX Writer2xhtml Calc2xhtml
backend

inputencoding

multilingual

greek_math

additional_symbols6

use_bibtex

bibtex_style

wrap_lines_after

split_linked_sections

split_toplevel_sections

save_images_in_subdir

notes

metadata

original_image_size

simple_table_limit

float_tables

float_figures

float_options

ignore_hard_page_breaks

ignore_hard_line_breaks

ignore_empty_paragraphs

ignore_double_spaces

scaling

column_scaling

convert_to_px

original_image_size

notes

use_dublin_core

display_hidden_sheets

display_hidden_rows

_cols

display_filtered_rows

_cols

apply_print_ranges

use_title_as_heading

use_sheetnames_as

_headings

calc_split

save_images_in_subdir

xslt_path

scaling

column_scaling

convert_to_px

original_image_size

notes

use_dublin_core

ignore_hard_line_breaks

ignore_empty_paragraphs

ignore_double_spaces

split_level

repeat_levels

save_images_in_subdir

6This is a pseudo-option which locks all the options use_pifont, use_ifsym, use_wasysym, use_eurosym
and use_tipa.

3. Using the command line utility
3.1. How to install Writer2LaTeX for command line usage

Writer2LaTeX can work as a standalone command line utility (an installation of OOo is not re-
quired).

Limitation: The export filters support conversion of embedded objects and graphics to a suitable
format. The command line utility can only handle graphics in the original format.

3.1.1. Installation for Microsoft Windows

To install Writer2LaTeX under Microsoft Windows follow these instructions:

1. Unzip writer2latex102.zip into some directory. This will create a subdirectory
writer2latex10.

2. Add this directory to your PATH environment variable.

3. Open the file w2l.bat with a text editor and replace the path at the top of the file with the full
path to Writer2LaTeX, for example

set W2LPATH="c:\writer2latex10"

(If you have extracted to the root of drive C, you don't have to edit this line.)

At a command line type java -version to verify that the Java executable is in your path. If
this is not the case or you have several Java versions installed you should edit the next line to
contain the full path to the Java executable, eg.

set JAVAEXE="C:\Program Files\java\j2sdk1.5.0_22\bin\java”

3.1.2. Installation for Unix and friends

1. Unzip writer2latex102.zip into some directory. This will create a subdirectory
writer2latex10.

2. Add this directory to your PATH environment variable.

3. Add execute permissions to w2l as follows:

chmod +x w2l

In some cases you may have to edit the script slightly:

If you place w2l and writer2latex.jar in different directories, or if you choose to create a symbolic
link to the script: Open the file w2l with a text editor and replace the path at the top of the file
with the full path to Writer2LaTeX, eg.

W2LPATH="/home/username/writer2latex10"

Also, the script assumes that the java executable is in your path, or that the JAVA_HOME
variable points to the locations. To verify the former, open a command shell and type java

-version. To verify the latter, type env. If neither is the case or you have several Java versions
installed you should edit this line to contain the full path to the Java executable, ie.

set MYJAVAEXE="/path/to/java/executable/”

3.2. Using the command line utility

To invoke the command line utility, use the command line

w2l <options> <source document/path> [<target document/path>]

The available options are

Group Option Explanation

Format

-latex Convert to LaTeX (default)

-bibtex Convert to BibTeX

-xhtml Convert to xhtml

-xhtml+mathml Convert to xhtml + MathML

-xhtml+mathml+xsl Convert to xhtml + MathML with xsl (see section 2.5)

Config

-config <file> Load configuration file (see section 4)

-ultraclean Load the LaTeX format ultraclean

-clean Load the LaTeX format clean

-pdfprint Load the LaTeX format pdfprint

-pdfscreen Load the LaTeX format pdfscreen

-cleanxhtml Load the xhtml format cleanxhtml

xhtml
-template <file> Load an xhtml template

-recurse Recurse into subdirectories (batch conversion)
Options -<option> <value> Set a configuration options (see section 4)

Some of the options are explained in more detail in the examples below.

3.2.1. Examples converting to LaTeX

The command line

w2l mydocument.odt mypath/myoutputdocument.tex

will convert the document mydocument.odt in the current directory, and save the result in the
subdirectory mypath in the document myoutputdocument.tex.

The command line

w2l -config myconfig.xml mydocument.odt

will convert the document using the configuration file myconfig.xml (You can read more about
configuration in section 4). As no output file is specified, Writer2LaTeX will use the same name
as the original document, but change the extension to .tex.

You can also specify any simple option described in section 4 directly on the command line. Eg.
to produce a file suitable for processing with pdfLaTeX:

w2l -backend pdftex mydocument.odt

Instead of giving your own configuration file, you can use one of the standard configurations.
For example to produce a clean LaTeX file (ie. ignoring most of the formatting from the source
document):

w2l -clean mydocument.odt

3.2.2. Examples converting to BibTeX from the command line

Writer2BibTeX extracts bibliography data to a BibTeX file. For example

w2l -bibtex mydocument.odt

will extract all bibliographic references from the document and store them in a file named
mydocument.bib. You can also extract the data as part of the conversion to LaTeX, see section 4.

3.2.3. Examples converting to XHTML from the command line

The command line

w2l -xhtml+mathml mydocument.odt

will convert the document to XHTML+MathML, using the filename mydocument.xhtml.

Likewise the commandline

w2l -xhtml -config myconfig.xml mydocument.odt myresult.html

will convert into XHTML using the specified configuration and file name.

To produce a clean xhtml file (see section 4.3), for example:

w2l -cleanxhtml mydocument.odt mypath/myoutputdoc.html

4. Configuration
4.1. Writer2LaTeX configuration

LaTeX export can be configured with a configuration file. The location of the configuration de-
pends on how you use Writer2LaTeX: Please see the sections on the export filter and the com-
mand line application.

The configuration is a file in xml format. Here is a sample configuration file for producing a
document of class book, converting only basic formatting and optimizing for pdfTeX.

<?xml version="1.0" encoding="UTF-8" ?>

<config>

<option name="backend" value="pdftex" />

<option name="documentclass" value="book" />

<option name="inputencoding" value="latin1" />

<option name="use_pifont" value="false" />

<option name="use_bibtex" value="false" />

<option name="bibtex_style" value="plain" />

<option name="formatting" value="convert_basic" />

<option name="page_formatting" value="convert_all" />

<heading-map max-level="4">

<heading-level-map writer-level="1" name="chapter" level="0" />

<heading-level-map writer-level="2" name="section" level="1" />

<heading-level-map writer-level="3" name="subsection"

level="2" />

<heading-level-map writer-level="4" name="subsubsection"

level="3" />

</heading-map>

<custom-preamble />

<style-map name="Quotations" family="paragraph"

before="\begin{quote}" after=\end{quote} />

<string-replace input="LaTeX" latex-code="{\LaTeX}" />

</config>

Writer2LaTeX comes with five standard configuration files:

• ultraclean.xml to produce a clean LaTeX file, ie. almost all the formatting is ignored.

• clean.xml is a less radical version; preserves hyperlinks, color and some character for-
matting.

• pdfscreen.xml to produce a LaTeX file which is optimized for screen viewing using the
package pdfscreen.sty.

• pdfprint.xml to produce a LaTeX file which is optimized for printing with pdfTeX.

In addition, you can find a sample configuration file suitable for documents originating from
Google Docs in the directry samples/config.

The following subsections explains the available options. The options written in italics can be
set using the dialog if you use Writer2LaTeX as an export filter.

4.1.1. General options

These options are used to control general aspects of the generated LaTeX document.

documentclass
This options defines the name of the LaTeX documentclass to use (de-
fault is article).

global_options
This option is a list of global options to add to the documentclass (the
default value is an empty string).

backend

This option can have any of the values generic, dvips, pdftex (de-
fault), xetex and unspecified. This will create LaTeX files suitable
for any backend/dvi driver, dvips, pdfTeX or XeTeX respectively. The
last value does not assume any specific backend. This value of the op-
tion affects export of graphics: Only file types than can be handled by
the backend are included. If you use the filter, other graphics will be
converted to a suitable format. If you use the command line applica-
tion, other types will be commented out. If you use unspecified, no
graphics will be commented out, nor converted.
The support for XeTeX is currently incomplete. More comprehensive
support for XeTeX is planned for the next version of Writer2LaTeX (ver-
sion 1.2).

inputencoding

The option inputencoding can have any of the values ascii (default),
latin1, latin2, iso-8859-7, cp1250, cp1251, koi8-r or utf8. This
option has no effect if the backend is XeTeX, in this case the encoding is
always utf-8.

multilingual
If this option is set to false, Writer2LaTeX will assume that the docu-
ment is written in one language only – otherwise all the language infor-
mation contained in the document will be used (default).

greek_math

This option can have the values true (default) or false. This means
that greek letters in latin or cyrillic text are rendered in math mode.
This behaviour assumes that greek letters are used as symbols in this
context, and has the advantage that greek text fonts are not required. It
is not used in greek text, where it would be look awful.

use_pifont
Setting this option to true enables the use of Zapf Dingbats using the
LaTeX package pifont.sty. Default is false. This option and the
following five font options has no effect if the backend is XeTeX.

use_ifsym
Setting this option to true enables the use of the ifsym symbol font us-
ing the LaTeX package ifsym.sty. Default is false.

use_wasysym Setting this option to true enables the use of the wasy symbol font
using the LaTeX package wasysym.sty. Default is false.

use_bbding
Setting this option to true enables the use of the bbding symbol font (a
clone of Zapf Dingbats) using the LaTeX package bbding.sty. Default
is false.

use_eurosym Setting this option to true enables the use of the eurosym font using
the LaTeX package eurosym.sty. Default is false.

use_tipa
Setting this option to true enables the use of phonetic symbols using
the LaTeX packages tipa.sty and tipx.sty. Default is false.

use_ooomath

This option can have the values true or false (default). This en-
ables the use of the LaTeX package ooomath.sty. This package de-
fines number of LaTeX macros used to convert formulas from OOo to
LaTeX. If this package is not used, the necessary definitions will be in-
cluded in the LaTeX preamble, which may become quite long – so using
ooomath.sty is recommended for documents with formulas.

use_lastpage
This option can have the values true or false (default). This enables
use of the package lastpage.sty to represent the page count.

4.1.2. Options for bibliography (BibTeX)

These options controls the handling of the bibliography.

use_bibtex
Setting this option to true enables the use of BibTeX for bibli-
ography generation. If it is set to false (default), the bibliog-
raphy is included as static text.

bibtex_style
This option can have any BibTeX style as value (default is
plain). This is the BibTeX style to be used in the LaTeX docu-
ment.

external_bibtex_files

Set this option to true if the bibliographic references in the
document should be interpreted as keys in one or more ex-
ternal BibTeX files. If set to false (default), the biblio-
graphic references will be exported to a BibTeX file (provided
use_bibtex is set to true).

4.1.3. File options

These options controls the creation of files associated with the main LaTeX document.

wrap_lines_after

The option specifies that Writer2LaTeX should try to break
lines in the LaTeX source as soon as possible after this num-
ber of characters. Default is 72. If you use a text editor
which supports wrapping of long lines, you may want to
set this option to 0: In this case Writer2LaTeX will not wrap
lines.

split_linked_sections
This option specifies that a linked section should be ex-
ported to a separate LaTeX-file. Default is false.

split_toplevel_sections
This option specifies that all sections should be exported to
a separate LaTeX-file, excluding nested sections. Default is
false.

save_images_in_subdir

Images contained in the document are normally placed in
the same directory as the LaTeX document. If the docu-
ment contains a large number of images, it may be more
convenient to put the images in a subdirectory. Set this op-
tion to true to do this.

4.1.4. Options for special content

notes

This option can have any of the values comment (default), ignore, marginpar,
pdfannotation. This specifies what to do with notes (annotations) in
the document: They can be ignored, converted to LaTeX comments, con-
verted to \marginpar or converted to pdf annotations (which will default to
\marginpar if the document is not processed with pdfLaTeX).
In addition, you can give any LaTeX command (inluding the backslash), and
the notes will be exported as \yourcommand{the note}.

metadata

If you set his option to true (default), Writer2LaTeX will export the title, au-
thor and date of the document as found under File – Properties. Furthermore,
if you have chosen pdf as the backend, the title, author, subject and keywords
will be exported to the pdf document and will be viewable if the pdf viewer
supports it. If the option is false , only the title will be exported.

4.1.5. Figure and table options

The first options are used to control the handling og floating or non-floating figures and tables.

float_figures
Use this option to specify that you want to include graphics and
text boxes in a floating figure environment. Default is false.

float_tables
Use this option to specify that you want to include tables in a
floating table environment. Default is false.

float_options
Use this to give placement options to the figure and table floats,
eg. h for here. Default is empty (default placement).

align_frames
Use this option to specify, that all graphics and text boxes
should be included in a center environment. If you don't want
that, set this option to false. Default is true.

use_caption
Use this option if you want to take advantage of the LaTeX
package caption.sty. Currently Writer2LaTeX only uses the
support for non-floating captions from this package.

figure_sequence_name

This option can be set to a sequence name in the source docu-
ment. OpenDocument has a very weak sense of figure captions:
A figure caption is a paragraph containing a sequence number.
If you use OOo's defaults, Writer2LaTeX can guess which se-
quence name to use. If it fails, you can give the name in this
option (default is empty).

table_sequence_name This is a similar option for tables.

These options controls the export of tables:

simple_table_limit

You can set this option to any non-negative integer (default is 0).
Table cells in OOo can contain any number of paragraphs, so nor-
mally Writer2LaTeX exports tables with p columns. For simple
tables where all cells only contains a single line it is better to use
l, c and r columns. If all cells in a table contains at most one para-
graph, and the total width of the table is less than this number of
characters, the table will be exported with l, c and r columns.
This option has no effect on tables using tabulary.

use_longtable
This option is used to specify that longtable.sty should be used
to export tables which may break across pages. Default is false.

use_supertabular

This option is used to specify that supertabular.sty should be
used to export tables which may break across pages. Default is
true. (You should only set one of the options use_longtable

and use_supertabular to true).

use_tabulary
This option is used to specify that tabulary.sty should be used
to export tables. Default is false.

use_colortbl

This option is used, if you want to apply background color to ta-
bles using the package colortbl.sty. The value can be true or
false (default). This option has no effect unless you also set the
option use_color to true.

These options controls the export of tables:

original_image_size

Often images in a Writer document are scaled up or
down from their original size. Normally the same scal-
ing will be used in the LaTeX document, but if you set
this option7 to true, the original (unscaled) image size
will be used. The default value is false.

remove_graphics_extension

This option can be used to specify, that the file exten-
sion on graphics files should be removed. You will
thus get eg. \includegraphics{myimage} rather than
\includegraphics{myimage.png}.

image_options

This option can be used to specify some op-
tions that should be applied to all images (ie.
all \includegraphics commands). For example
"width=\linewidth". Default is empty (no options).

4.1.6. AutoCorrect options

ignore_hard_page_breaks

This option can have the values true or false (default).
Setting the option to true will instruct Writer2LaTeX to ig-
nore hard page breaks (but not soft page breaks specified in
paragraph styles).

ignore_hard_line_breaks
This option can have the values true or false (default).
Setting the option to true will instruct Writer2LaTeX to ig-
nore hard line breaks (shift-Enter).

ignore_empty_paragraphs

This option can have the values true (default) or false.
Setting the option to true will instruct Writer2LaTeX to ig-
nore empty paragraphs; otherwise they are converted to a
\bigskip.

7In previous versions, this option was called keep_image_size, but has been renamed to avoid confusion (the
old name is still supported).

ignore_double_spaces
This option can have the values true (default) or false.
Setting the option to true will instruct Writer2LaTeX to ig-
nore double spaces, otherwise they are converted to \ .

4.1.7. Formatting options

In Writer, formatting is controlled by styles. You can control how much formatting is exported
using the following options. Note that these options has a major impact on the structure of the
LaTeX document created.

formatting

The option formatting can have any of these values:
ignore_all will instruct Writer2LaTeX to ignore all charac-
ter, paragraph, heading, list and footnote formatting contained
in the document.ignore_most will preserve basic character for-
matting.convert_basic (default) will preserve basic character
formatting as well as all numberings (lists, headings, foot-
notes).convert_most will convert all supported formatting, except
that paragraph formatting and font size is only converted if it is set by
a style. To be able to preserve formatting, an environment is created
for all paragraph styles, custom lists is used for listings, headings are
reformatted using the \@startsection command etc.convert_all
will preserve all supported formatting.

page_formatting

This option can have any of the values
ignore_all, convert_header_footer, convert_all
This will ignore all page formatting, convert the header and footer
(using custom page styles) or convert all supported formatting, in-
cluding page geometry and footnote rule.

use_geometry

Setting this option to true specifies that the package geometry.sty

should be used to export the geometry of the page (page size, mar-
gins etc.). Default is false, which will export the geometry using the
low level LaTeX commands.

use_fancyhdr

Setting this option to true specifies that the package fancyhdr.sty

should be used to export the header and footer of the page. Default
is false, which will export the header and footer using the low level
LaTeX page style commands.

use_color
This option can have the values true (default) or false. This enables
use of the package color.sty to apply color in the LaTeX document.

use_ulem
This option can have the values true or false (default). This enables
use of the package ulem.sty to support underlining and crossing out
in the LaTeX document.

use_hyperref
This option can have the values true (default) or false. This enables
use of the package hyperref.sty to include hyperlinks in the LaTeX
document.

tabstop

This option is used to specify what to do with tabulator stops in the
document. Normally these are converted to spaces, but with this op-
tion you can specify any LaTeX code, that should be used instead.
For example "\quad{}" or "\hspace{2em}"

use_endnotes

This option can have the values true or false (default). This en-
ables use of the package endnotes.sty to format the endnotes in
the LaTeX document. If set to false, endnotes will be converted to
footnotes.

4.1.8. Options for including or excluding content

The following options can be used to control which content to export.

no_preamble

If this option is set to true, (default is false), Writer2LaTeX will
not create the a LaTeX preamble, nor include \begin{document} and
\end{document}. This is useful if the document is to be included in
another LaTeX document. Note that in this case you will have to make
sure that all packages/definitions needed are available in the master
LaTeX document.

no_index

If this option is set to true, (default is false), Writer2LaTeX will not
export indexes (e.g. table of contents, bibliopgrahy). This option is also
intended for the case that the document is to be part of a larger LaTeX
document, which may contain global indexes.

other_styles

This option can all have the values accept (default), ignore, warning
and error. This controls how to export paragraph and text content, for
which there is no style map (see below).
If the value of this option is accept, the content is handled as normal. If
the value is ignore, the content is ignored silently. The values warning
and error issues a message on the terminal resp. in the generated La-
TeX code. This option thus lets you control that only content with ac-
cepted styles is exported.

image_content This option has the same values, and is used to exclude image content.

table_content
This option also has the same values and is used to exclude table con-
tent.

4.1.9. Headings

The heading_map section specifies how headings in OOo should map to LaTeX. Eg. the first line
in the sample above specifies that the toplevel heading (Heading 1) should map to \chapter,
which is of level 0 in LaTeX. Up to 10 levels are supported (the same number as in OOo).

4.1.10. Style maps

In addition you can specify maps from styles in Writer to your own LaTeX styles in the config-
uration. Currently this is possible for text styles, paragraph styles and list styles. In addition a

few direct formatting attributes can be mapped to LaTeX code. The following examples are from
the standard configuration file article.xml.

This is a simple rule, that maps text formatted with the text style Emphasis to the LaTeX code
\emph{...}:

<style-map name="Emphasis" family="text" before="\emph{" after="}" />

This is another simple rule, that maps paragraphs formatted with the paragraph style part to
the LaTeX code \part{...}. The attribute line-break ensures that no line breaks are inserted
between the code and the text.

<style-map name="part" family="paragraph" before="\part{" after="}"
line-break="false" />

This is a rule, that maps paragraphs formatted with style Preformatted Text to the LaTeX en-
vironment verbatim. The attribute verbatim ensures that the content of the paragraph is ex-
ported verbatim (this implies that characters not available in the inputenc are converted to
question marks and that other content is discarded, eg. footnotes). The paragraph-block entry
specifies code to go before and after an entire block of paragraphs. The name attribute specifies
the style of the first paragraph; the next attribute specifies the style(s) of subsequent paragraphs
in the block.

<style-map name="Preformatted Text" family="paragraph-block"
next="Preformatted Text" before="\begin{verbatim}"
after="\end{verbatim}" />

<style-map name="Preformatted Text" family="paragraph" before=""
after="" verbatim="true" />

This is a more elaborate set of rules, that maps paragraphs formatted with styles Title, author
and date (in any order) to \maketitle in LaTeX.

<style-map name="Title" family="paragraph" before="\title{" after="}"
line-break="false" />
<style-map name="author" family="paragraph" before="\author{" after="}"
line-break="false" />
<style-map name="date" family="paragraph" before="\date{" after="}"
line-break="false" />
<style-map name="Title" family="paragraph-block" next="author;date"
before="" after="\maketitle" />
<style-map name="author" family="paragraph-block" next="Title;date"
before="" after="\maketitle" />
<style-map name="date" family="paragraph-block" next="Title;author"
before="" after="\maketitle" />

This will produce code like this:

\title{Configuration}

\author{Henrik Just}

\date{2006}

\maketitle

The next example maps a paragraph formatted with the theorem list style to a LaTeX environ-
ment named theorem. Note that there are two entries for a list style: The first one to specify the
LaTeX code to put before and after the entire list. The second one to specify the LaTeX code to
put before and after each list item.

<style-map name="theorem" family="paragraph" before="" after="" />
<style-map name="theorem" family="list" before="" after="" />
<style-map name="theorem" family="listitem" before="\begin{theorem}"
after="\end{theorem}" />

When you override a style, all formatting specified in the original document will be igored.

Finally an example using direct formatting attributes:

<style-map name="italic" family="text-attribute" before="\emph{"
after="}" />

Currently the only supported names are italic, bold, small-caps, superscript and
subscript.

4.1.11. String replace

Often LaTeX requires special care to typeset certain constructions. For example according to
german typografical rules, an abbreviation like z.B. should be typeset with a small space before
the B. You can specify this in the configuration:

<string-replace input="z.B." latex-code="z.\,B." />

The input is the text in the OOo document, the latex-code is the LaTeX code to export for this
text.

Another example is french quotations marks (« Je parle français ») which should be converted to
the LaTeX macros \fg and \og. This can be achieved using this rule:

<string-replace input="« " latex-code="\fg " />

<string-replace input=" »" latex-code="\og " />

The final example ensures that the LaTeX logo is typeset correctly

<string-replace input="LaTeX" latex-code="{\LaTeX}" />

4.1.12. Math symbols

In OOo Math you can add user-defined symbols. Writer2LaTeX already understands the pre-
defined symbols such as %alpha. If you define your own symbols, you can add an entry in the
configuration that specifies LaTeX code to use. The math-symbol-map element is used for this:

<math-symbol-map name=”ddarrow” latex=”\Downarrow” />

This example will map the symbol %ddarrow to the LaTeX code \Downarrow.

4.1.13. Custom preamble

The text you specify in the element custom-preamble will be copied verbatim into the LaTeX
preamble. For example:

<custom-preamble>\usepackage{palatino}</custom-preamble>

to typeset your document using the postscript font palatino.

4.2. Writer2xhtml and Calc2xhtml configuration

Also the XHTML export can be configured with a configuration file in xml format. This is a
sample configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<config>

<option name="custom_stylesheet" value="/mystyle.css" />

<option name="ignore_styles" value="false" />

<option name="use_dublin_core" value="true" />

<option name="convert_to_px" value="true" />

<option name="split_level" value="1" />

<xhtml-style-map name="mystyle" family="paragraph" element="p"
css="mycssclass" />

</config>

The following subsections explains the available options. The options written in italics can be
set using the dialog if you use Writer2xhtml as an export filter.

4.2.1. Style options

You can control some general aspects of the generated XHTML documents using these technical
options.

no_doctype

If you set this options to true (default is false), Writer2xhtml
will not include the !DOCTYPE declaration in the converted docu-
ment. The !DOCTYPE is required for a valid xhtml document: This
option should only be used if you need to process the document
further.

encoding

This option is used to specify the character encoding to use for the
xhtml document. Currently supported encodings are UTF-8 (de-
fault), UTF-16, ISO-8859-1 and US-ASCII. Characters not sup-
ported by the encoding are exported as numeric character entities.

use_named_entities

If you set this options to true (default is false), Writer2xhtml
will use named character entities as defined by (X)HTML. If you
export to XHTML+MathML, also named MathML entities will be
used.

add_bom
In rare cases, it may be required to ad a BOM (Byte Order Mark) to
the XHTML document. Most applications will not need this, but
you can set this options to true to enable this (default is false).

custom-stylesheet

Use this options to give an URL to your own, external CSS
stylesheet. If the value is empty or the option is not specified,
no external stylesheet will be used.
For more advanced solutions (eg. different style sheets for screen
viewing and printing) you can use an XHTML template – see be-
low.

The following options are used to control the conversion of the formatting in the source docu-
ment. If you use an external CSS style sheet, this is important to define.

formatting

The option formatting is used to specify how much text
formatting (character, paragraph and list formatting) to ex-
port8. Possible values are
convert_all (default): Convert all formatting to CSS.
ignore_styles: Convert hard formatting but not for-
matting by styles. Use this value if you use a custom
stylesheet, but still want to be able to add some hard for-
matting (eg. a centered paragraph, some bold text etc.)
ignore_hard: Convert formatting by styles, but no hard
formatting (except as given by attribute style maps, see
below). Use this if the document is well structured using
styles, so that any hard formatting should be considered
an error.
ignore_all: Convert no formatting at all. Use this value
if you use a custom stylesheet and the document is well
structured using styles, so that any hard formatting should
be considered an error.

frame_formatting Used for the same purpose for frame formatting.

section_formatting
Used for the same purpose for section formatting. (But
note that OOo does not offer section styles currently).

table_formatting
Used for the same purpose for table formatting. (But note
that OOo does not offer table styles currently).

ignore_table_dimensions

Set this option to true if you don't want table dimen-
sions (table width, column width and row height) to be
exported, but want to leave the layout of the tables to the
browser. Default is false.

tabstop_style

Used this option to specify a style used for tabstops. Nor-
mally tabstops are exported as spaces, but with this option
the space will be contained in a span element, eg.

You can then define a CSS rule like eg.
tabstop { width: 2em; }

use_list_hack

This option is used to fix a problem with continued
lists. If you set this options to true (default is false),
Writer2xhtml will export a list that continues on level 2 or
below like
...

This is not valid in xhtml, but works in browsers. Also two
deprecated attributes are used to continue numbering.

In addition, a number of options defines how dimensions in the source document should be
handled.

convert_to_px

When this option is true (default), Writer2xhtml will convert all
units to px, otherwise the original units are used. The resolution
is assumed to be 96ppi, you can change this with the scaling

option. Eg. a scaling of 75% will change the resolution to 72ppi.

scaling
Use this option to specify a scaling of all formatting, ie. to get a
different text size than the original document. The value must be
a percentage, default is 100%.

column_scaling
Use this option to specify an additional scaling for table colums.
The value must be a percentage, default is 100%.

natural_image_size9
Use this option to specify that the size of images should not be
exported, hence LaTeX should use the original size of the image.
Default is false.

8This and the following options replaces the former option ignore_styles.

4.2.2. Options for special content

use_dublin_core

Use this option to specify if Dublin Core Meta data should be ex-
ported (the format will be as specified in http://dublincore.
org/documents/dcq-html/). If the value is false, it will not be
exported (default is true).

notes
If this option is set to true (default), notes in the document will be
exported as XHTML comments. These are not directly visible in the
browser. If you don't want to include notes, set this option to false.

4.2.3. AutoCorrect options

ignore_double_spaces

This options can have the values true (default) or false.
Setting the option to true will instruct Writer2xhtml to ig-
nore double spaces, otherwise they are converted to non-
breaking spaces.

ignore_empty_paragraphs
This option can have the values true (default) or false.
Setting the option to true will instruct Writer2xhtml to ig-
nore empty paragraphs..

9In previous versions, this option was called keep_image_size, but has been renamed to avoid confusion (the
old name is still supported).

http://dublincore.org/documents/dcq-html/
http://dublincore.org/documents/dcq-html/

ignore_hard_line_breaks
This option can have the values true or false (default).
Setting the option to true will instruct Writer2xhtml to ig-
nore hard line breaks (Shift-Enter in OOo).

4.2.4. File options

split_level

This option is used to specify that the Writer documents
should be split in several documents and the outline level
at which the splitting should happen (the default 0 means no
split). This is convenient for long documents. Each output
document will get a simple navigation panel in the header
and the footer.

repeat_levels

If you split the document, you can use this option to spec-
ify that headings of higher levels should be repeated on page
breaks. This may help the user to identify the current posi-
tion in the document. Default is 5 (all levels are repeated).

save_images_in_subdir

Images contained in the document are normally placed in the
same directory as the XHTML document. If the document
contains a large number of images, it may be more conve-
nient to put the images in a subdirectory. Set this option to
true to do this.

uplink
This option is used to specify a link which brings the user up
in a page hierarchy. For example "../index.html".

4.2.5. Options specific for spreadsheet documents

calc_split

Set this option to true if you want spreadsheet doc-
uments should be split in several documents (one for
each sheet). This is convenient for large spreadsheets.
Each output document will get a simple navigation
panel in the header and the footer.
The default value is false, which means that the en-
tire spreadsheet will be converted to a singe XHTML
document.

display_hidden_sheets
Set this option to true if you want to export sheets
that are defined as hidden. Default is false.

display_hidden_rows_cols
Set this option to true if you want to export rows or
columns that are defined as hidden. Default is false.

display_filtered_rows_cols
Set this option to true if you want to export rows or
columns that are not visible due to a filter. Default is
false.

apply_print_ranges

I you set this option to true, the print ranges defined
in the document will be used. The content of the re-
sult will thus be identical to the content of printed
output. If you set the option to false (default), the
content of the output will be identical to the content
that you can see when editing the document.

use_title_as_heading
If you set this option to true (default), the title of the
document will be included in the XHTML document
as a heading.

use_sheet_names_as_headings
If you set this option to true (default), the sheet name
will be added as a heading above each table in the
XHTML document.

4.2.6. Options for batch conversion

directory_icon
Used to specify an URL for an (icon) image that represents a directory.
This is used when Writer2xhtml creates index pages for a directory.

document_icon
Used to specify an URL for an (icon) image that represents a docu-
ment. This is used when Writer2xhtml creates index pages for a di-
rectory.

4.2.7. Style maps

In addition to the options, you can specify that certain styles in Writer should be mapped to
specific XHTML elements and CSS style classes. Here are some examples showing how to use
some of the built-in Writer styles to create XHTML elements:

<?xml version="1.0" encoding="UTF-8"?>

<config>

<!-- map OOo paragraph styles to xhtml elements -->

<xhtml-style-map name="Text body" family="paragraph"

element="p" css="(none)" />

<xhtml-style-map name="Sender" family="paragraph"

element="address" css="(none)" />

<xhtml-style-map name="Quotations" family="paragraph"

block-element="blockquote" block-css="(none)"

element="p" css="(none)" />

<!-- map OOo text styles to xhtml elements -->

<xhtml-style-map name="Citation" family="text"

element="cite" css="(none)" />

<xhtml-style-map name="Emphasis" family="text"

element="em" css="(none)" />

<!-- map hard formatting attributes to xhtml elements -->

<xhtml-style-map name="bold" family="attribute"

element="b" css="(none)" />

<xhtml-style-map name="italics" family="attribute"

element="i" css="(none)" />

</config>

An extended version of this is distributed with Writer2LaTeX, please see the file
cleanxhtml.xml.

The attributes of the xhtml-style-map element are used as follows:

• name specifies the name of the Writer style.

• family10 specifies the style family in Writer; this can either be text, paragraph, frame,
list or attribute. The last value does not specify a real style, but refers to hard format-
ting attributes. The possible names in this case are bold, italics, fixed (for fixed pitch
fonts), superscript and subscript.

• element specifies the XHTML element to use when converting this style. This is not used
for frame and list styles.

• css specifies the CSS style class to use when converting this style. If it is not specified or
the value is “(none)”, no CSS class will be used.

• block-element only has effect for paragraph styles. It is used to specify a block XHTML
element, that should surround several exported paragraphs with this style.

• block-css specifies the CSS style class to be used for this block element. If it is not
specified or the value is “(none)”, no CSS class will be used.

For example the rules above produces code like this:

<p>This paragraph is Text body</p>

10Previously this attributed was called class.

<address>This paragraph is Sender</address>

<blockquote>

<p>This paragraph is Quotations</p>

<p>This paragraph is also Quotations</p>

</blockquote>

<p>This paragraph is also Text body and has some text with emphasis
style and uses some hard formatting.</p>

You can use your own Writer styles together with your own CSS style sheet to create further
style mappings, for example:

<xhtml-style-map name="Some OOo style" family="paragraph"

block-element="div" block-css="block_style"

element="p" css="par_style" />

to produce output like this:

<div class=”block_style”>

<p class=”par_style”>Paragraph with Some OOo style</p>

<p class=”par_style”>Yet another</p>

</div>

Note that the rules for hard formatting are only used when formatting is set to ignore_hard

or ignore_all. It is not recommended to rely on these rules, using real text styles is prefer-
able. They are included because the use of hard character formatting is very common even in
otherwise well-structured documents.

4.3. Using OpenOffice.org to create XHTML documents

The configuration file cleanxhtml.xml that is distributed with Writer2LaTeX, can be used to
create semantically rich XHTML content, which can be formatted with your own stylesheet (you
should edit the file to add the URL to the stylesheet you want to use).

A subset of the built-in styles in Writer are mapped to XHTML elements (note that the style
names are localized, so this is for the english version of OpenOffice.org):

OOo Writer style OOo Writer style family XHTML element

Text body paragraph style p

Sender paragraph style address

Quotations paragraph style blockquote

Preformatted Text paragraph style pre

List Heading paragraph style dt (in dl)

List Contents paragraph style dd (in dl)

Horizontal Rule paragraph style hr

Citation text style cite

Definition text style dfn

Emphasis text style em

OOo Writer style OOo Writer style family XHTML element

Example text style samp

Source Text text style code

Strong Emphasis text style strong

Teletype text style tt

User entry text style kbd

Variable text style var

bold hard formatting attribute b

italics hard formatting attribute i

fixed pitch font hard formatting attribute tt

superscript hard formatting attribute sup

subscript hard formatting attribute sub

So by using these styles only, you will create well-structured XHTML documents. See the docu-
ment sample-xhtml.sxw for an example of how to use this.

5. The LaTeX package ooomath.sty

OOo Math has a few features that are not available in standard LaTeX packages. Hence
Writer2LaTeX uses an optional package ooomath.sty11 which implements these construc-
tions. This packages is only needed for documents containing formulas. If it is not available,
Writer2LaTeX will insert the necessary definitions in the LaTeX preamble.

It is sufficient to place ooomath.sty in the same directory as the converted LaTeX document. It
will however be more convenient if you install it in your TeX distribution. The proper place will
usually be the “local texmf tree”, please see the documentation of your TeX distribution. Below
are specific instructions for teTeX and MikTeX:

5.0.1. Instructions for teTeX and TeX Live (Linux)

If you use teTeX or TeX Live on Linux you can install ooomath.sty as follows:

Open a shell and type

texconfig conf

This will list the configuration details for TeX. Under the heading “Kpathsea” you will see a list
of directories searched by TeX. You can put ooomath.sty in the subdirectory tex of any of these
directories. Usually the directory

/home/<user name>/texmf/tex

can be used (you can create it if it doesn't exist).

11This pakcage replaces writer.sty used by older versions of Writer2LaTeX.

Next you should type

texconfig rehash

to make TeX refresh it's filename database.

5.0.2. Instructions for MikTeX (Windows)

If you use MikTeX you can install ooomath.sty as follows:

Copy ooomath.sty to the tex subdirectory in the local texmf tree. With a standard installation
this will be the directory

c:\localtexmf\tex

If this directory does not exist you should start “MikTeX Options” (you can find this in the Start
Menu). On the tab page Roots you can see the location of the local texmf tree.

If the subdirectory tex does not exist, you can create it.

Next you should start “MikTeX Options”. On the tab page General, click the button Refresh
Now to make MikTeX refresh it's filename database.

6. Using Writer2LaTeX from another application
6.1. Using Writer2LaTeX from a Java application

Writer2LaTeX features a simple API to convert documents from another Java application. Please
see the javadoc for writer2latex.jar (the package writer2latex.api) for details.

The API offers a stream based as well as a file based interface for conversions.

Here's a simple example showing how to convert a file to LaTeX using a custom configuration
(excluding exception handling) using the file based methods of the API.

import java.io.File;

import writer2latex.api.*;

// Create a LaTeX converter

Converter converter =

ConverterFactory.createConverter("application/x-latex");

// Configure the converter

Config config = converter.getConfig();

config.read(new File("myconfig.xml"));

config.setOption("inputencoding","latin1");

// Convert the document

ConverterResult result =

converter.convert(new File("mydocument.odt"),

"mydocument.tex");

// Write the files

result.write(new File("mydirectory"));

Using the stream based methods the conversion may look like this (assuming the option
save_images_in_subdir is set to false):

import java.io.FileInputStream;

import java.io.FileOutputStream;

// Convert the document

ConverterResult result =

converter.convert(new FileInputStream("mydocument.odt"),

"mydocument.tex");

// Write the files

Enumeration docs = dataOut.iterator();

while (docs.hasNext()) {

OutputFile docOut = (OutputFile) docs.next();

FileOutputStream fos =

new FileOutputStream("mydirectory/"+docOut.getFileName());

docOut.write(fos);

fos.flush();

fos.close();

}

Writer2LaTeX also offers an interface for batch conversion of a directory into xhtml. For at simple
example, see the source of Application.java.

6.2. Using Writer2LaTeX from a Basic macro

You can also access Writer2LaTeX through OOo's api. Here's an example using a Basic macro,
but the principle is the same for any other language with a UNO binding.

Writer2LaTeX is used as any other filter in OOo. Using the parameter FilterData, you can
provide specific options for Writer2LaTeX: You can give an URL for a configuration file to use
and/or you can provide values for simple options (the order does not matter, the configuration
file is always read first).

This example exports a document to LaTeX using a specific configuration, but overriding the
value of the option use_colortbl.

Dim sUrl As String

sUrl = <url to document>

Dim sConfigUrl As String

sConfigUrl = <url to config>

Dim oFilterData(1) As New com.sun.star.beans.PropertyValue

oFilterData(0).Name = "ConfigURL"

oFilterData(0).Value = sConfigUrl

oFilterData(1).Name = "use_colortbl"

oFilterData(1).Value = "true"

Dim oProps(2) As New com.sun.star.beans.PropertyValue

oProps(0).Name = "FilterName"

oProps(0).Value = "org.openoffice.da.writer2latex"

oProps(1).Name = "Overwrite"

oProps(1).Value = true

oProps(2).Name = "FilterData"

oProps(2).Value = oFilterData

ThisComponent.StoreToURL(sUrl, oProps())

The table lists the names of the filters provided by Writer2LaTeX:

Format FilterName

LaTeX org.openoffice.da.writer2latex

BibTeX org.openoffice.da.writer2bibtex

xhtml (text document) org.openoffice.da.writer2xhtml

xhtml (spreadsheet) org.openoffice.da.calc2xhtml

xhtml + MathML org.openoffice.da.writer2xhtml.mathml

xhtml + MathML using xsl org.openoffice.da.writer2xhtml.mathml.xsl

The url for the configuration can contain variables such as $(user) for the user installation of
OOo. Thus for example sConfigUrl = “$(user)/myconfig.xml” can be used to point to a
configuration within the user installation. See

http://api.openoffice.org/docs/common/ref/com/sun/star/util/
PathSubstitution.html

for a list of available variables.

As a special feature, you can require one of Writer2LaTeX's standard configurations. To do this,
the URL should start with an asterisk, for example sConfigUrl = “*ultraclean.xml”.

6.3. Batch conversion with UNO

Writer2LaTeX also offers a uno service

org.openoffice.da.writer2xhtml.BatchConverter

providing batch conversion of a complete directory into another format
(usually xhtml) with index pages. This service implements the interface
org.openoffice.da.writer2xhtml.XBatchConverter, which provides a single method

// method

// org::openoffice::da::writer2xhtml::XBatchConverter::convert

http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html

void convert ([in] string sSourceURL,

[in] string sTargetURL,

[in] sequence<com::sun::star::beans::PropertyValue> lArguments,

[in] XBatchHandler handler);

• The sSourceURL specifies the URL of the source directory

• The sTargetURL specifies the URL of the target directory

• The handler is an implementation of the call back interface
org.openoffice.da.writer2xhtml.XBatchHandler, which is used to provide
user interaction during the conversion process. See the IDL definition for documentation.
If you use the batch conversion from a Basic macro, the interface must be implemented
using CreateUnoListener.

The available arguments (for the parameter lArguments) are specified in this table

Argument Description
Recurse Set to true (default) if you want to convert subdirectories

Uplink
You can set this to an URL, which will be used as an uplink on the
index page for the top level directory

DirectoryIcon
You can set this to an URL pointing to an image that represents a
directory

DocumentIcon
You can set this to an URL pointing to an image that represents a
document

TemplateURL

You can set this to an URL pointing to an XHTML template that
should be used to generate the index page(s).
Note that if you want to provide an XHTML template for the doc-
uments as well, this must be done using the FilterData (and the
templates may be different).

IndcludePdf
Set this to true (default) if you want to include a pdf version of
each file in addition to the XHTML version

UseTitle
Set this to true (default) if you want to use the document title in
the index page rather than the file name

UseDescription
Set this to true (default) if you want to include the description of
the document in the index page.

WriterFilterName

You can set this to the name of any Writer export fil-
ter you have available in your OOo installation. The de-
fault is the XHTML export filter provided by Writer2xhtml
(org.openoffice.da.writer2xhtml).

WriterFilterData
The structure of this argument depends on the filter, but for the
default filter it is a sequence of PropertyValues to pass options
to the filter (see above).

CalcFilterName

You can set this to the name of any Calc export filter
you have available in your OOo installation. The de-
fault is the XHTML export filter provided by Writer2xhtml
(org.openoffice.da.calc2xhtml).

CalcFilterData
The structure of this argument depends on the filter, but for the
default filter it is a sequence of PropertyValues to pass options
to the filter (see above).

6.4. Converting from StarMath with a Basic macro

In addition to converting a complete document, you can also convert a single formula from
StarMath to LaTeX. To do this, the uno service

org.openoffice.da.writer2latex.W2LStarMathConverter

is provided. This service supports two methods

string convertFormula ([in] string sStarMathFormula);

string getPreamble ();

• The method convertFormula converts a StarMath string to a LaTeX string

• The method getPreamble returns a LaTeX preamble suitable for processing the con-
verted formulas.

This small example is a Basic macro that converts a few formulas and displays the result. Note
that the last conversion triggers a definition of the LaTeX macro \defeq in getPreamble().

Dim smc As Object

smc = CreateUnoService(_

"org.openoffice.da.writer2latex.W2LStarMathConverter")

MsgBox smc.convertFormula("1 over 2")

MsgBox smc.convertFormula("int from 1 to infty f(x)dx")

MsgBox smc.convertFormula("sqrt 3")

MsgBox smc.convertFormula("f(x) def xˆ2-1")

MsgBox smc.getPreamble()

7. Troubleshooting
If you have to convert a large document, you could get the following error message :

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

In that case, you need to manually increase the memory available to the java virtual machine,
for example using the following command to convert your document:

java -Xmx128M -jar writer2latex.jar bigFile.sxw out.tex

In the example, the heap size is set to 128 Megabyte of RAM. If you still get the “heap space”
error, try setting the available memory to 256 or 512 Megabyte (assuming that your computer
has enough physical RAM).

If you are using Writer2LaTeX as an export filter in OOo, this problem will result in a generic
error message saying that that document could not be written. To increase the heap size in this
case, choose Tools – Options – OpenOffice.org – Java. Click Parameters, and add the parameter
-Xmx128M (or higher).

A few memory optimizations are planned for the next version (1.2), which should make it pos-
sible to convert a wider range of documents without increasing the heap size in java.

	Introduction
	Using the export filters
	Using the command line utility
	Configuration
	The LaTeX package ooomath.sty
	Using Writer2LaTeX from another application
	Troubleshooting

