
User's manual for

Writer2LaTeX, Writer2BibTeX, Writer2xhtml and Calc2xhtml

version 0.5

© 2002–2007 Henrik Just

Table of Contents

1 Introduction 3

2 Installation 5

3 Using Writer2LaTeX and Writer2BibTeX 10

4 Using Writer2xhtml and Calc2xhtml 36

5 Using Writer2LaTeX from another Java application 50

6 Troubleshooting 52

1 . Introduction
1.1 . What is Writer2LaTeX?

Writer2LaTeX is a utility to convert OpenDocument text and spreadsheet documents – in partic-
ular documents containing formulas – into other formats.

Actually it is 4 converters in one:

• Writer2LaTeX converts OpenDocument text documents to LaTeX 2e, and works together
with:

• Writer2BibTeX extracts bibliographic data from an OpenDocument text document and con-
verts it to BibTeX format.

• Writer2xhtml converts OpenDocument text documents to XHTML 1.0 strict or XHTML 1.1 +
MathML 2.0, using CSS2 to convert style information.

• Calc2xhtml converts OpenDocument spreadsheet documents to XHTML 1.0 strict, using
CSS2 to convert style information.

The old file formats for OpenOffice.org 1.x (or StarOffice 6/7) Writer and Calc documents are
also supported.

Although Writer2LaTeX is a general OpenDocument converter, it is primarily designed for use
with OpenOffice.org/StarOffice You can use Writer2LaTeX

• ...as a command line utility, independent of OpenOffice.org/StarOffice.

• ...as an export filter for OpenOffice.org 2.x, StarOffice 8 or NeoOffice 2.01.

• ...from another Java program.

This user's manual will explain how to install and use Writer2LaTeX.

Writer2LaTeX is a Java application, and thus should work on any platform that supports
Java. You need Sun's Java 2 Virtual Machine (Runtime Environment), version 1.4 or 1.5.
You can download this from http://java.sun.com/getjava/download.html . AFAIK
Writer2LaTeX doesn't run (unmodified) under any other Java interpreter.

Note: In this manual OOo is used as an abbreviation of OpenOffice.org/StarOffice/NeoOffice.

1If you want to use Writer2LaTeX as an export filter in older versions, please use version 0.4.

2 . Installation
2.1 . How to install Writer2LaTeX for command line usage

Writer2LaTeX can work as a standalone command line utility (that is without OOo).

2.1 .1. Installation for Microsoft Windows

To install Writer2LaTeX under Microsoft Windows follow these instructions:

1. Unzip writer2latex05.zip into some directory. This will create a subdirectory
writer2latex05 .

2. Add this directory to your PATH environment variable.

3. Open the file w2l.bat with a text editor and replace the path at the top of the file with the
full path to Writer2LaTeX, for example

set W2LPATH="c:\writer2latex05"

(If you have extracted to the root of drive C, you don't have to edit this line.)

At a command line type java -version to verify that the Java executable is in your path.
If this is not the case or you have several Java versions installed you should edit the next line
to contain the full path to the Java executable, eg.

set JAVAEXE="C:\j2sdk1.4.0_01\bin\java”

2.1 .2. Installation for Unix and friends

1. Unzip writer2latex05.zip into some directory. This will create a subdirectory
writer2latex05 .

2. Add this directory to your PATH environment variable or create a symbolic link to the file
w2l from some directory in yout PATH.

3. Open the fle w2l with a text editor and replace the path at the top of the file with the full path
to Writer2LaTeX, eg.

W2LPATH="/home/username/writer2latex05"

(If you have extracted into your home directory, you don't have to edit this line.)

Open a command shell and type java -version to verify that the Java executable is in your
path. If this is not the case or you have several Java versions installed you should edit the next
line to contain the full path to the Java executable, ie.

set JAVAEXE="/path/to/java/executable/”

4. Add execute permissions to w2l as follows:

chmod +x w2l

2.2 . How to install Writer2LaTeX as an export filter

Writer2LaTeX can work as an export filter for OOo Writer. This requires OpenOffice.org 2.x,
StarOffice 8 or NeoOffice 2.0.

Note: OOo 2.0.4 includes Writer2LaTeX version 0.4 (LaTeX and BibTeX export only). I you install
version 0.5, the built-in version will be disabled. If you uninstall version 0.5, the original version
will reappear.

The following instructions covers all operating systems.

Important: Before you install Writer2LaTeX, you need to set up OOo to use Java. You can config-
ure this in OOo under Tools – Options. Of course this requires that you have installed Java on
your system.

2.2 .1. Install Writer2LaTeX for a single user

1. Start OOo and chose Tools – Extension Manager. (Tools – Package Manager in versions
prior to OOo 2.1).

2. Select My packages and select writer2latex.uno.pkg using the Add button.

3. You should now be able to see writer2latex.uno.pkg if you expand the list using the
plus-icon:

4. Finally restart OOo.

2.2 .2. Install Writer2LaTeX for all users

Note: If you want to install Writer2LaTeX for all users, you will normally need to log in as
root/administrator.

Then the installation proceeds as follows:

1. Make sure that no OOo processes are running: Close all document windows and (under
MS Windows) the Quick Starter.

2. From a command shell, navigate to the directory

<OOo install>/program

and type

unopkg gui

On unix-like systems you may have to type

./unopkg gui

3. Select OpenOffice.org packages and select writer2latex.uno.pkg using the Add
button

4. You should now be able to see writer2latex.uno.pkg if you expand the list using the
plus-icon, as above.

2.3 . Uninstall Writer2LaTeX

To remove the Writer2LaTeX filters from your OOo installation, you should open the Extension
Manager as described above, select writer2latex.uno.pkg and click Remove.

3 . Using Writer2LaTeX and Writer2BibTeX
Writer2LaTeX is quite flexible: It can take advantage of several LaTeX packages, such as
hyperref , pifont , ulem . It can create customized LaTeX code based on the styles and text
in the document. Also it supports 25 different languages, latin, greek and cyrillic scripts and 8
inputencodings.

The flexibility makes it possible to use Writer2LaTeX from several philosophies:

• You can use LaTeX as a typesetting engine for your OOo documents: Writer2LaTeX can be
configured to create a LaTeX document with as much formatting as possible preserved. Note
that the resulting LaTeX source will be readable, but not very clean.

Be aware that even though Writer2LaTeX tries hard to cope with any document, you will only
get good results for well structured documents, ie. documents that are formatted using styles.

• If you need to continue the work on your document in LaTeX your primary interest may be
the content rather than the formatting. Writer2LaTeX can be configured to produce a LaTeX
document which strips most of the formatting and hence produces a clean LaTeX source from
any source document.

• If you don't like to write LaTeX code by hand, you may use OOo as a simple graphical
front-end for LaTeX. Using a special OOo Writer template and a special configuration file
for Writer2LaTeX, you can create well-structured LaTeX documents that resembles “hand-
written” LaTeX documents. You can compare this to the way LyX works.

Writer2LaTeX does not provide an input filter for LaTeX. It is recommended to use Eitan

http://www.lyx.org/

M. Gurari's TeX4ht to convert LaTeX documents into OOo Writer format. Roundtrip editing
OOo Writer ↔ LaTeX is not possible in general, but Writer2LaTeX+TeX4ht does provide some
rudimentary support for this, see section 3.6.

3.1 . The LaTeX package ooomath.sty

OOo Math has a few features that are not available in standard LaTeX packages. Hence
Writer2LaTeX uses an optional package ooomath.sty 2 which implements these construc-
tions. This packages is only needed for documents containing formulas. If it is not available,
Writer2LaTeX will insert the necessary definitions in the LaTeX preamble.

It is sufficient to place ooomath.sty in the same directory as the converted LaTeX document. It
will however be more convenient if you install it in your TeX distribution. The proper place will
usually be the “local texmf tree”, please see the documentation of your TeX distribution. Below
are specific instructions for teTeX and MikTeX:

3.1 .1. Instructions for teTeX (unix)

If you use teTeX you can install ooomath.sty as follows:

Open a shell and type

texconfig conf

This will list the configuration details for teTeX. Under the heading “Kpathsea” you will see a

2This pakcage replaces writer.sty used by older versions of Writer2LaTeX.

http://www.cse.ohio-state.edu/~gurari/TeX4ht/mn.html

list of directories searched by TeX. You can put ooomath.sty in the subdirectory tex of any of
these directories. Usually the directory

/home/<user name>/texmf/tex

can be used (you can create it if it doesn't exist).

Next you should type

texconfig rehash

to make teTeX refresh it's filename database.

3.1 .2. Instructions for MikTeX (Windows)

If you use MikTeX you can install ooomath.sty as follows:

Copy ooomath.sty to the tex subdirectory in the local texmf tree. With a standard installation
this will be the directory

c:\localtexmf\tex

If this directory does not exist you should start “MikTeX Options” (you can find this in the Start
Menu). On the tab page Roots you can see the location of the local texmf tree.

If the subdirectory tex does not exist, you can create it.

Next you should start “MikTeX Options”. On the tab page General, click the button Refresh
Now to make MikTeX refresh it's filename database.

3.2 . Converting to LaTeX from the command line

To convert a file to LaTeX use the command line

w2l [-latex] [-config <configfile>] [options] <document to
convert> [<output path and/or file name>]

The parts in square brackets are optional.

This will produce a LaTeX file with the specified name. If no output file is specified,
Writer2LaTeX will use the same name as the original document, but change the extension to
.tex .

Examples:

w2l mydocument.sxw mypath/myoutputdocument.tex

or

w2l -config clean.xml mydocument.sxw

If you specify the -config option, Writer2LaTeX will load this configuration file before convert-
ing your document. You can read more about configuration in section 3.5. You can also specify
any simple option described in this section directly on the command line, eg. to produce a file
suitable for processing with pdfLaTeX:

w2l -backend pdftex mydocument.sxw

The script w2l also provides a shorthand notation to use the sample configuration files included
in writer2latex05.zip . The command line is

w2l [-ultraclean|-clean|-pdfscreen|-pdfprint|-article] <writer
document to convert> [<output path and/or file name>]

For example to produce a clean LaTeX file (ie. ignoring most of the formatting from the source
document):

w2l -clean mydocument.sxw

It is recommended that you create your own scripts to support your own configuration file(s).

3.3 . Converting to BibTeX from the command line

Writer2BibTeX extracts bibliography data to a BibTeX file. To do this use the commandline

w2l -bibtex <writer document to convert> [<output path and/or file
name>]

You can also extract the data as part of the conversion to LaTeX, see section 3.5.

3.4 . Using Writer2LaTeX and Writer2BibTeX as export filters

If you choose File – Export in Writer you should be able to choose LaTeX 2e, BibTeX as file type.

Note: You have to use the export menu because there is no import filter for LaTeX/BibTeX. You
should always save in the native format of OOo as well!

3.5 . Configuration

LaTeX export can be configured with a configuration file. Where the configuration is read from
depends on how you use Writer2LaTeX:

If you use Writer2LaTeX as an export filter in OOo, the configuration is handled as follows:

• The file writer2latex.xml is read from the user installation directory of OOo

On linux/unix usually something like <home directory>/.OpenOffice.org2/user

On windows usually something like <user profile>\OpenOffice.org2\user

If the file does not exist, it will be created automatically.

If, on the other hand, you use Writer2LaTeX from the command line, you will have to specify on
the command line which configuration file to use.

The configuration is a file in xml format. Here is a sample configuration file for producing a
document of class book , converting only basic formatting and optimizing for pdfTeX.

<?xml version="1.0" encoding="UTF-8" ?>

<config>

<option name="backend" value="pdftex" />

<option name="documentclass" value="book" />

<option name="inputencoding" value="latin1" />

<option name="use_pifont" value="false" />

<option name="use_bibtex" value="false" />

<option name="bibtex_style" value="plain" />

<option name="formatting" value="convert_basic" />

<option name="page_formatting" value="convert_all" />

<option name="debug" value="false" />

<heading-map max-level="6">

<heading-level-map writer-level="1" name="chapter" level="0" />

<heading-level-map writer-level="2" name="section" level="1" />

<heading-level-map writer-level="3" name="subsection"

level="2" />

<heading-level-map writer-level="4" name="subsubsection"

level="3" />

<heading-level-map writer-level="5" name="paragraph"

level="4" />

<heading-level-map writer-level="6" name="subparagraph"

level="5" />

</heading-map>

<custom-preamble />

<style-map name="Quotations" class="paragraph"

before="\begin{quote}" after=\end{quote} />

<string-replace input="LaTeX" latex-code="{\LaTeX}" />

</config>

The meaning of each part is explained in the following sections. Writer2LaTeX comes with five
sample configuration files:

• ultraclean.xml to produce a clean LaTeX file, ie. almost all the formatting is ignored.

• clean.xml is a less radical version; preserves hyperlinks, color and most character format-
ting.

• pdfscreen.xml to produce a LaTeX file which is optimized for screen viewing using the
package pdfscreen.sty .

• pdfprint.xml to produce a LaTeX file which is optimized for printing with pdfTeX.

• article.xml to produce a LaTeX article, see section 3.6.

3.5 .1. Basic options

• The option backend can have any of the values generic , dvips , pdftex (default) and
unspecified . This will create LaTeX files suitable for any backend/dvi driver, dvips or
pdfTeX respectively. The last value does not assume any specific backend. This option affects
export of graphics: Only file types than can be handled by the backend are included; other
types will be commented out. If you use unspecified , no graphics will be commented out.

• If the option no_preamble is set to false , Writer2LaTeX will not create the a LaTeX pream-
ble, nor include \begin{document} and \end{document} . This is useful if the document
is to be included in another LaTeX document. Note that in this case you will have to make

sure that all packages/definitions needed are available in the master LaTeX document.

• The option inputencoding can have any of the values ascii (default), latin1 , latin2 ,
iso-8859-7 , cp1250 , cp1251 , koi8-r or utf8 . The latter requires Dominique Unruh's
ucs.sty .

• If the option multilingual is set to false, Writer2LaTeX will assume that the document
is written in one language only – otherwise all the language information contained in the
document will be used.

• The option split_linked_sections specifies that a linked section should be exported to
a separate LaTeX-file. Default is false .

• The option split_toplevel_section specifies that all sections should be exported to a
separate LaTeX-file, excluding nested sections. Default is false .

• The option wrap_lines_after specifies that Writer2LaTeX should try to break lines in the
LaTeX source as soon as possible after this number of characters. Default is 72 . If you use a
text editor which supports wrapping of long lines, you may want to set this option to 0; in
this case Writer2LaTeX will not wrap lines.

3.5 .2. Options for document structure

• The option documentclass is the name of the documentclass to use (default is article).

• The option global_options is a list of global options to add to the documentclass (the
default value is an empty string).

• The heading_map section specifies how headings in OOo should map to LaTeX. Eg. the
first line in the sample above specifies that the toplevel heading (Heading 1) should map to
\chapter , which is of level 0 in LaTeX. Up to 10 levels are supported (the same number as
in OOo).

3.5 .3. Table options

• The option use_longtable is used to specify that longtable.sty should be used to ex-
port tables which may break across pages. Default is false .

• The option use_supertabular is used to specify that supertabular.sty should be used
to export tables which may break across pages. Default is true . (You should only set one of
the options use_longtable and use_supertabular to true).

• The option use_tabulary is used to specify that tabulary.sty should be used to export
tables. Default is false .

• The option simple_table_limit can be set to any non-negative integer (default is 0). Table
cells in OOo can contain any number of paragraphs, so normally Writer2LaTeX exports tables
with p columns. For simple tables where all cells only contains a single line it is better to
use l , c and r columns. If all cells in a table contains at most one paragraph, and all these
paragraphs contains less than this number of characters, the table will be exported with l , c
and r columns. This option has no effect on tables using tabulary .

• The option use_colortbl is used, if you want to apply background color to tables using
the package colortbl.sty . The value can be true or false (default). This option has no

effect unless you also set the option use_color to true.

• The option float_tables can be used to specify that you want to include graphics and text
boxes in a table environment. Default is false .

• The option float_options can be used to give placement options to the figure floats, eg. h
for here. Default is empty (default placement).

• The option table_sequence_name can be set to a sequence name in the source document.
OpenDocument has a very weak sense of table captions: A table caption is a paragraph con-
taining a sequence number. If you use OOo's defaults, Writer2LaTeX can guess which se-
quence name to use. If it fails, you can give the name in this option (default is empty).

• The option use_caption can be used if you want to take advantage of the LaTeX package
caption.sty . Currently Writer2LaTeX only uses the support for non-floating captions from
this package.

3.5 .4. Graphics options

• The option float_figures can be used to specify that you want to include graphics and
text boxes in a figure environment. Default is false .

• The option float_options can be used to give placement options to the figure floats, eg. h
for here. Default is empty (default placement).

• The option figure_sequence_name can be set to a sequence name in the source document.
OpenDocument has a very weak sense of figure captions: A figure caption is a paragraph

containing a sequence number. If you use OOo's defaults, Writer2LaTeX can guess which
sequence name to use. If it fails, you can give the name in this option (default is empty).

• The option use_caption can be used if you want to take advantage of the LaTeX package
caption.sty . Currently Writer2LaTeX only uses the support for non-floating captions from
this package.

• The option align_frames can be used to specify, that all graphics and text boxes should be
included in a center environment. If you don't want that, set this option to false . Default
is true.

• The option keep_image_size can be used to specify that the size of images should not be
exported, hence LaTeX should use the original size of the image. Default is false .

• The option image_options can be used to specify some options that should be applied to
all images (ie. all \includegraphics commands). For example "width=\linewidth" .
Default is empty (no options).

• The option remove_graphics_extension can be used to specify, that the file extension
on graphics files should be removed. You will thus get eg. \includegraphics{myimage}
rather than \includegraphics{myimage.png} . This can be handy if you use an external
tool to convert the graphics files (you should set the option backend to unspecified in this
case).

3.5 .5. Font and symbol options

• The option greek_math can have the values true (default) or false . This means that greek
letters in latin or cyrillic text are rendered in math mode. This behaviour assumes that greek
letters are used as symbols in this context, and has the advantage that greek text fonts are not
required. It is not used in greek text, where it would be awful.

• The option use_ooomath can have the values true or false (default). This enables the use
of the LaTeX package ooomath.sty . If this package is not used, the necessary definitions will
be included in the LaTeX preamble, which may become quite long – so using ooomath.sty
is recommended.

• The option use_pifont can have the values true or false (default). This enables the use
of Zapf Dingbats using the LaTeX package pifont.sty .

• The option use_wasysym can have the values true or false (default). This enables the use
of the wasy symbol font using the LaTeX package wasysym.sty .

• The option use_ifsym can have the values true or false (default). This enables the use of
the ifsym symbol font using the LaTeX package ifsym.sty .

• The option use_bbding can have the values true or false (default). This enables the use
of the bbding symbol font (a clone of Zapf Dingbats) using the LaTeX package bbding.sty .

• The option use_eurosym can have the values true or false (default). This enables the use
of the eurosym symbol font using the LaTeX package eurosym.sty .

• The option use_tipa can have the values true or false (default). This enables the use of

phonetic symbols using the LaTeX package tipa.sty .

3.5 .6. Options for various packages

• The option use_hyperref can have the values true (default) or false . This enables use of
the package hyperref.sty to include hyperlinks in the LaTeX document.

• The option use_color can have the values true (default) or false . This enables use of the
package hyperref.sty to apply color in the LaTeX document.

• The option use_endnotes can have the values true or false (default). This enables use
of the package endnotes.sty to include endnotes in the LaTeX document. If set to false ,
endnotes will be converted to footnotes.

• The option use_ulem can have the values true or false (default). This enables use of the
package ulem.sty to support underlining and crossing out in the LaTeX document.

• The option use_lastpage can have the values true or false (default). This enables use of
the package lastpage.sty to represent the page count.

3.5 .7. Various options

• The option notes can have any of the values comment (default), ignore , marginpar ,
pdfannotation . This specifies what to do with notes (annotations) in the document: They
can be ignored, converted to LaTeX comments, converted to \marginpar or converted to
pdf annotations (which will default to \marginpar if the document is not processed with

pdfLaTeX).

In addition, you can give any LaTeX command (inluding the backslash), and the notes will be
exported as \yourcommand{the note} .

• The option tabstop is used to specify what to do with tabulator stops in the document.
Normally these are converted to spaces, but with this option you can specify any LaTeX code,
that should be used instead. For example "\quad" , "\hspace{2em}"

3.5 .8. Options for BibTeX

• The option use_bibtex can have the values true or false (default). This enables the use
of BibTeX for bibliography generation. If it is set to false , the bibliography is included as
text.

• The option bibtex_style can have any BibTeX style as value (default is plain). This is the
BibTeX style to be used in the LaTeX document.

3.5 .9. Options to control export of page formatting

• The option page_formatting can have any of the values ignore_all ,
convert_header_footer , convert_all . This will ignore all page formatting, con-
vert the header and footer (using custom page styles) or convert all supported formatting,
including page geometry and footnote rule.

• The option use_geometry specifies that the package geometry.sty should be used to ex-

port the geometry of the page (page size, margins etc.). Default is false , which will export
the geometry using the low level LaTeX commands.

• The option use_fancyhdr specifies that the package fancyhdr.sty should be used to ex-
port the header and footer of the page. Default is false , which will export the header and
footer using the low level LaTeX page style commands.

3.5 .10. Options to control export of other formatting

In Writer, formatting is controlled by styles. You can control how much formatting is exported
using the following options3. Note that these options has a major impact on the structure of the
LaTeX document created.

• The option formatting can have any of these values:

• ignore_all will instruct Writer2LaTeX to ignore all character, paragraph, heading, list
and footnote formatting contained in the document.

• ignore_most will preserve basic character formatting.

• convert_basic (default) will preserve basic character formatting as well as all number-
ings (lists, headings, footnotes).

• convert_most will convert all supported formatting, except that paragraph formatting
and font size is only converted if it is set by a style. To be able to preserve formatting, an
environment is created for all paragraph styles, custom lists is used for listings, headings

3Note that these options have changed a lot since version 0.3.2.

are reformatted using the \@startsection command etc.

• convert_all will preserve all supported formatting.

• The option ignore_empty_paragraphs can have the values true (default) or false . Set-
ting the option to true will instruct Writer2LaTeX to ignore empty paragraphs; otherwise
they are converted to \bigskip .

• The option ignore_double_spaces can have the values true (default) or false . Setting
the option to true will instruct Writer2LaTeX to ignore double spaces, otherwise they are
converted to (\).

• The option ignore_hard_page_breaks can have the values true or false (default). Set-
ting the option to true will instruct Writer2LaTeX to ignore hard page breaks (but not soft
page breaks specified in paragraph styles).

• The option ignore_hard_line_breaks can have the values true or false (default). Set-
ting the option to true will instruct Writer2LaTeX to ignore hard line breaks (shift-Enter).

3.5 .11. Options for strict handling of content

The following options can be used if you want a very strict control with the content allowed in
the document. The options

• other_styles

• image_content

• table_content

Can all have the values accept (default), ignore , warning and error .

This controls how various content should be handled by Writer2LaTeX. The option
other_styles controls paragraph and text content, for which there is no style map (see be-
low). The other options control images and tables.

If the value of this option is accept , the content is handled as normal. If the value is ignore ,
the content is ignored silently. The values warning and error issues a message on the terminal
resp. in the generated LaTeX code.

3.5 .12. Style maps

In addition you can specify maps from styles in Writer to your own LaTeX styles in the config-
uration. Currently this is possible for text styles, paragraph styles and list styles. The following
examples are from the sample configuration file article.xml .

This is a simple rule, that maps text formatted with the text style Emphasis to the LaTeX code
\emph{...} :

<style-map name="Emphasis" class="text" before="\emph{" after="}"
/>

This is another simple rule, that maps paragraphs formatted with the paragraph style part to the
LaTeX code \part{...} . The attribute line-break ensures that no line breaks are inserted
between the code and the text.

<style-map name="part" class="paragraph" before="\part{" after="}"
line-break="false" />

This is a rule, that maps paragraph formatted with style Preformatted Text to the LaTeX environ-
ment verbatim . The attribute verbatim ensures that the content of the paragraph is exported
verbatim (this implies that characters not available in the inputenc are converted to question
marks and that other content is discarded, eg. footnotes). The paragraph-block entry spec-
ifies code to go before and after an entire block of paragraphs. The name attribute specifies the
style of the first paragraph; the next attribute specifies the style(s) of subsequent paragraphs in
the block.

<style-map name="Preformatted Text" class="paragraph-block"
next="Preformatted Text" before="\begin{verbatim}"
after="\end{verbatim}" />

<style-map name="Preformatted Text" class="paragraph" before=""
after="" verbatim="true" />

This is a more elaborate set of rules, that maps paragraphs formatted with styles Title, author
and date (in any order) to \maketitle in LaTeX.

<style-map name="Title" class="paragraph" before="\title{"
after="}" line-break="false" />
<style-map name="author" class="paragraph" before="\author{"
after="}" line-break="false" />
<style-map name="date" class="paragraph" before="\date{" after="}"
line-break="false" />
<style-map name="Title" class="paragraph-block" next="author;date"

before="" after="\maketitle" />
<style-map name="author" class="paragraph-block" next="Title;date"
before="" after="\maketitle" />
<style-map name="date" class="paragraph-block" next="Title;author"
before="" after="\maketitle" />

This will produce code like this:

\title{Configuration}

\author{Henrik Just}

\date{2006}

\maketitle

The last example maps a paragraph formatted with the theorem list style to a LaTeX environ-
ment named theorem . Note that there are two entries for a list style: The first one to specify the
LaTeX code to put before and after the entire list. The second one to specify the LaTeX code to
put before and after each list item.

<style-map name="theorem" class="paragraph" before="" after="" />
<style-map name="theorem" class="list" before="" after="" />
<style-map name="theorem" class="listitem" before="\begin{theorem}"
after="\end{theorem}" />

When you override a style, all formatting specified in the original document will be igored.

3.5 .13. String replace

Often LaTeX requires special care to typeset certain constructions. For example according to
german typografical rules, an abbreviation like z.B. should be typeset with a small space before
the B. You can specify this in the configuration:

<string-replace input="z.B." latex-code="z.\,B." />

The input is the text in the OOo document, the latex-code is the LaTeX code to export for
this text.

3.5 .14. Math symbols

In OOo Math you can add user-defined symbols. Writer2LaTeX already understands the prede-
fined symbols such as %alpha . If you define your own symbols, you can add an entry in the
configuration that specifies LaTeX code to use. The math-symbol-map element is used for this:

<math-symbol-map name=”ddarrow” latex=”\Downarrow” />

This example will map the symbol %ddarrow to the LaTeX code \Downarrow .

3.5 .15. Custom preamble

The text you specify in the element custom-preamble will be copied verbatim into the LaTeX
preamble. For example:

<custom-preamble>\usepackage{palatino}</custom-preamble>

to typeset your document using the postscript font palatino.

3.6 . Using OpenOffice.org as a frontend for LaTeX

Writer2LaTeX has some simple support for using OOo as a frontend for LaTeX. The long term
goal of this is to turn Writer into a near-wysiwyg LaTeX editor somewhat like LyX.

Here is a short description:

Create a new document based on the template LaTeX-article.stw.

This template contains a number of styles that corresponds to LaTeX code:

OOo Writer style OOo Writer class LaTeX code

Title4 paragraph \title{...} 5

author paragraph \author{...}

date paragraph \date{...}

abstract title paragraph renews \abstractname

abstract paragraph abstract environment

part paragraph \part{...}

Heading 2 paragraph \section{...}

Heading 3 paragraph \subsection{...}

Heading 4 paragraph \subsubsection{...}

OOo Writer style OOo Writer class LaTeX code

Heading 5 paragraph \paragraph{...}

Heading 6 paragraph \subparagraph{...}

flushleft paragraph flushleft environment

flushright paragraph flushright environment

center paragraph center environment
verse paragraph verse environment

quote paragraph quote environment

quotation paragraph quotation environment

Preformatted text paragraph verbatim environment6

theorem paragraph theorem environment

itemize paragraph itemize list

enumerate paragraph enurerate list

List Heading paragraph description list (item la-
bel)

List Contents paragraph description list (item text)

verb text \verb|...|

OOo Writer style OOo Writer class LaTeX code

Emphasis text \emph{...}

Strong Emphasis text \textbf{...}

textrm text \textrm{...}

textsf text \textsf{...}

texttt text \texttt{...}

textup text \textup{...}

textsl text \textsl{...}

textit text \textit{...}

textsc text \textsc{...}

textmd text \textmd{...}

textbf text \textbf{...}

tiny text {\tiny ...}

scriptsize text {\sciptsize ...}

footnotesize text {\footnotesize ...}

small text {\small ...}

normalsize text {\normalsize ...}

OOo Writer style OOo Writer class LaTeX code

large text {\large ...}

Large text {\Large ...}

LARGE text {\LARGE ...}

huge text {\huge ...}

Huge text {\Huge ...}

If you use these styles and uses the configuration file article.xml when you convert your
document with Writer2LaTeX, you will get a result that resembles a handwritten LaTeX file.
Note that hard formatting and any other styles will be ignored.

3.6 .1. Roundtrip editing

Writer2LaTeX does not provide a filter, that converts LaTeX files back into OOo Writer
format. This is however possible with Eitan M. Gurari's TeX4ht system (http://www.
cse.ohio-state.edu/~gurari/TeX4ht/mn.html). If you use Writer2LaTeX (with
article.xml) together with TeX4ht's OOo mode (oolatex), simple roundtrip edition LaTeX
↔ OOo Writer is supported. Beware of information loss if you do this – do not use this roundtrip
for existing LaTeX or Writer documents!

4The use of italics in this table indicates styles that are predefined in OOo. The names of these styles will be
localized if you use a non-english version of OOo.

5Also \maketitle is added at the end of a sequence of Title, author and date.
6Only characters available in the inputenc are accepted. Other characters are converted to question marks and

other content is discarded, eg. footnotes.

http://www.cse.ohio-state.edu/~gurari/TeX4ht/mn.html
http://www.cse.ohio-state.edu/~gurari/TeX4ht/mn.html

As a genereal rule, you should save your document in the native OOo Writer format and convert
to LaTeX when you are finished (or want to see the result).

4 . Using Writer2xhtml and Calc2xhtml
Writer2xhtml is producing standards compliant XHTML files, in particular it can be used to put
math on the web using the XHTML + MathML combination. Thus Writer2xhtml can convert
into any of these XHTML variants:

• XHTML 1.0 strict, which follows the guidelines for HTML compatibility, so that the output
should be viewable with any browser that supports HTML 4.

• XHTML 1.1 + MathML 2.0, which currently is viewable with the Mozilla and Amaya browsers
only.

• XHTML 1.1 + MathML 2.0 using XSL transformations from the W3C Math Working Group
to make the file viewable also in some browsers that needs a plugin to display MathML, eg.
Internet Explorer with MathPlayer plugin.

This is how W3C's Math Working Group recommends to put ”math on the web”.

Note that the default file extension and the recommended MIME types varies with the output
format:

Output format Default file extenstion MIME type

XHTML 1.0 .html text/html

XHTML 1.1 + MathML 2.0 .xhtml application/xhtml+xml

http://www.w3.org/Math/XSL/

Output format Default file extenstion MIME type
XHTML 1.1 + MathML 2.0
(with xsl transformation)

.xml application/xml

Writer2xhtml is quite flexible; in particular with respect to the handling of formatting:

• You can let Writer2xhtml convert the style information in the source document and thus get
an xhtml document that has the same general appearance as the original, but with an online
look and feel.

• You can use your own style sheet and let Writer2xhtml convert the content only. You can map
styles in OOo to xhtml elements and css classes from your style sheet, see sections 4.3 and 4.4

Calc2xhtml is a companion to Writer2xhtml that produces XHTML 1.0 strict from your Calc
documents.

4.1 . Converting to XHTML from the command line

To convert a file to XHTML use the command line

w2l [options] <document/directory to convert>

[<output path and/or file name>]

The available options are

• -xhtml , -xhtml+mathml and -xhtml+mathml+xsl specifies the output format (if you
leave this out, the output format will be LaTeX!).

• -recurse to specifiy that batch conversion of a directory should recurse into subdirectories.

• -template filename to specify a template file. Writer2xhtml will use this file as a tem-
plate for the converted document. The template must contain an element with the attribute
id="content" . This element should accept block content, eg. div or td . Optionally it can
also contain elements with attributes id="header" and id="footer" . These will be used
for navigation links.

• -config filename to specify a configuration file. Writer2xhtml will load this configuration
file before converting your document. You can read more about configuration in section 4.3.

• -option value to set any simple configuration option, where option the name of a simple
option, see section 4.3.

This will produce an XHTML file with the specified name. If no output file is specified,
Writer2xhtml will use the same name as the original document, but a different file extension.

Examples:

w2l -xhtml+mathml+xsl mydocument.sxw

or

w2l -xhtml -config myconfig.xml mydocument.sxw

The script w2l also provides a shorthand notation to use the sample configuration file included
in writer2latex05.zip . The command line is

w2l -cleanxhtml <writer document to convert> [<output path and/or
file name>]

This configuration file produces a ”clean” xhtml file (see section 4.4), for example:

w2l -cleanxhtml mydocument.sxw mypath/myoutputdoc.html

It is recommended that you create scripts to support your own configuration files.

4.2 . Using Writer2xhtml as an export filter

If you choose File – Export in Writer you should be able to choose XHTML 1.0 strict, XHTML
1.1 + MathML 2.0 or XHTML 1.1 + MathML 2.0 (xsl) as file type. Using Calc2xhtml as an export
filter is not yet supported.

Note: You have to use the export menu because Writer2xhtml does not provide an import filter
for XHTML. You should always save in the native format of OOo as well!

4.3 . Configuration

XHTML export can be configured with a configuration file. Where the configuration is read from
depends on how you use Writer2xhtml:

If you use Writer2xhtml as an export filter in OOo, the configuration is handled as follows:

• The file writer2latex.xml is read from the user installation directory of OOo

On linux/unix usually something like <home directory>/.OpenOffice.org2/user

On windows usually something like <user profile>\OpenOffice.org2\user

If the file does not exist, it will be created automatically.

If, on the other hand, you use Writer2xhtml from the command line, you will have to specify on
the command line which configuration file to use.

The configuration is a file in xml format. Here is a sample configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<config>

<option name="xhtml_custom_stylesheet" value="/mystyle.css" />

<option name="xhtml_ignore_styles" value="false" />

<option name="xhtml_use_dublin_core" value="true" />

<option name="xhtml_convert_to_px" value="true" />

<option name="xhtml_split_level" value="1" />

<xhtml-style-map name="mystyle" class="paragraph" element="p"
css="mycssstyle" />

</config>

4.3 .1. Options

• The option xhtml_no_doctype can have the values true or false (default). When this
option is true , Writer2xhtml will not include the !DOCTYPE declaration in the converted
document. The !DOCTYPE is required for a valid xhtml document; this option should only
be used if you need to process the document further.

• The option xhtml_encoding (default UTF-8) is used to specify the character encoding to use
for the xhtml document.

• The option xhtml_custom_stylesheet is used to specify an URL to your own, external
stylesheet. If the value is empty or the option is not specified, no external stylesheet will be
used.

• The option xhtml_formatting is used to specify how much text formatting (character,
paragraph and list formatting) to export7. Possible values are

• convert_all (default): Convert all formatting to css.

• ignore_styles : Convert hard formatting but not formatting by styles. Use this value if
you use a custom stylesheet, but still want to be able to add some hard formatting (eg. a
centered paragraph, some bold text etc.)

• ignore_hard : Convert formatting by styles, but no hard formatting (except as given by
attribute style maps, see below). Use this if the document is well structured using styles,
so that any hard formatting should be considered an error.

• ignore_all : Convert no formatting at all. Use this value if you use a custom stylesheet
and the document is well structured using styles, so that any hard formatting should be
considered an error.

• The option xhtml_frame_formatting is used for the same purpose for frame formatting.

7This and the following options replaces the former option xhtml_ignore_styles .

• The option xhtml_section_formatting is used for the same purpose for section format-
ting. (But note that OOo does not offer section styles currently).

• The option xhtml_table_formatting is used for the same purpose for table formatting.
(But note that OOo does not offer table styles currently).

• The option xhtml_ignore_table_dimensions is used to specify that you don't want ta-
ble dimensions (table width, column width and row height) to be exported, but want to leave
the layout of the tables to the browser.

• The option xhtml_use_dublin_core is used to specify if Dublin Core Meta data should
be exported (the format will be as specified in http://dublincore.org/documents/
dcq-html/). If the value is false , it will not be exported.

• The option xhtml_convert_to_px can have the values true (default) or false . When
this option is true , Writer2xhtml will convert all units to px , otherwise the original units are
used. The resolution is assumed to be 96ppi, you can change this with the xhtml_scaling
option. Eg. a scaling 75%will change the resolution to 72ppi.

• The option xhtml_scaling is used to specify a scaling of all formatting, ie. to get a different
text size than the original document. The value must be a percentage.

• The option xhtml_column_scaling is used to specify an additional scaling for table
colums. The value must be a percentage.

• The option xhtml_split_level is used to specify that the Writer documents should be
split in several documents and the outline level at which the splitting should happen (the

http://dublincore.org/documents/dcq-html/
http://dublincore.org/documents/dcq-html/

default 0 means no split). This is convenient for long documents. Each output document will
get a simple navigation panel in the header and the footer.

• The option xhtml_calc_split is used to specify that the Calc documents should be split
in several documents, one for each sheet. This is convenient for large spreadsheets. Each
output document will get a simple navigation panel in the header and the footer.

• The option xhtml_uplink is used to specify a link which brings the user up in the page
hierarchy. For example "../index.html" .

• The option xhtml_directory_icon is used to specify an (icon) image that represents a
directory. This is used when Writer2xhtml creates index pages for a directory.

• The option xhtml_document_icon is used to specify an (icon) image that represents a doc-
ument. This is used when Writer2xhtml creates index pages for a directory.

• The option xhtml_use_list_hack is used to fix a problem with continued lists. This will
export a list that continues on level 2 or below like ... ,
which is not valid in xhtml, but works in browsers. Also two deprecated attributes are used
to continue numbering. Default is false .

• The option xhtml_tabstop_style can be used to specify a style used for tabstops. Nor-
mally tabstops are exported as spaces, but with this option the space will be contained in a
span element, eg. . You can then define a css rule
like eg. tabstop { width: 2em; } .

• The option ignore_double_spaces can have the values true (default) or false . Setting

the option to true will instruct Writer2xhtml to ignore double spaces, otherwise they are
converted to non-breaking spaces.

• The option ignore_empty_paragraphs can have the values true (default) or false . Set-
ting the option to true will instruct Writer2xhtml to ignore empty paragraphs..

• The option ignore_hard_line_breaks can have the values true or false (default). Set-
ting the option to true will instruct Writer2xhtml to ignore hard line breaks (shift-Enter).

4.3 .2. Style maps

In addition to the options, you can specify that certain styles in Writer should be mapped to
specific XHTML elements and CSS style classes. Here are some examples showing how to use
some of the built-in Writer styles to create XHTML elements:

<?xml version="1.0" encoding="UTF-8"?>

<config>

<!-- map OOo paragraph styles to xhtml elements -->

<xhtml-style-map name="Text body" class="paragraph"

element="p" css="(none)" />

<xhtml-style-map name="Sender" class="paragraph"

element="address" css="(none)" />

<xhtml-style-map name="Quotations" class="paragraph"

block-element="blockquote" block-css="(none)"

element="p" css="(none)" />

<!-- map OOo text styles to xhtml elements -->

<xhtml-style-map name="Citation" class="text"

element="cite" css="(none)" />

<xhtml-style-map name="Emphasis" class="text"

element="em" css="(none)" />

<!-- map hard formatting attributes to xhtml elements -->

<xhtml-style-map name="bold" class="attribute"

element="b" css="(none)" />

<xhtml-style-map name="italics" class="attribute"

element="i" css="(none)" />

</config>

An extended version of this is distributed with Writer2LaTeX, please see the file
cleanxhtml.xml .

The attributes of the xhtml-style-map element are used as follows:

• name specifies the name of the Writer style.

• class specifies the styles class in Writer; this can either be text , paragraph , frame , list
or attribute . The last value does not specify a real style, but refers to hard formatting

attributes. The possible names in this case are bold , italics , fixed (for fixed pitch fonts),
superscript and subscript .

• element specifies the XHTML element to use when converting this style. This is not used for
frame and list styles.

• css specifies the CSS style class to use when converting this style. If it is not specified or the
value is “(none)” , no CSS class will be used.

• block-element only has effect for paragraph styles. It is used to specify a block XHTML
element, that should surround several exported paragraphs with this style.

• block-css specifies the CSS style class to be used for this block element. If it is not specified
or the value is “(none)” , no CSS class will be used.

For example the rules above produces code like this:

<p>This paragraph is Text body</p>

<address>This paragraph is Sender</address>

<blockquote>

<p>This paragraph is Quotations</p>

<p>This paragraph is also Quotations</p>

</blockquote>

<p>This paragraph is also Text body and has some text with
emphasis style and uses some hard formatting.</p>

You can use your own Writer styles together with your own CSS style sheet to create further
style mappings, for example:

<xhtml-style-map name="Some OOo style" class="paragraph"

block-element="div" block-css="block_style"

element="p" css="par_style" />

to produce output like this:

<div class=”block_style”>

<p class=”par_style”>Paragraph with Some OOo style</p>

<p class=”par_style”>Yet another</p>

</div>

Note that the rules for hard formatting are only used when xhtml_ignore_styles is set to
true . It is not recommended to rely on these rules, using real text styles is preferable. They
are included because the use of hard character formatting is very common even in otherwise
well-structured documents.

4.4 . Using OpenOffice.org to create XHTML documents

The configuration file cleanxhtml.xml that is distributed with Writer2LaTeX, can be used to
create semantically rich XHTML content, which can be formatted with your own stylesheet (you
should edit the file to add the URL to the stylesheet you want to use).

A subset of the built-in styles in Writer are mapped to XHTML elements (note that the style

names are localized, so this is for the english version of OpenOffice.org):

OOo Writer style OOo Writer class XHTML element

Text body paragraph style p

Sender paragraph style address

Quotations paragraph style blockquote

Preformatted Text paragraph style pre

List Heading paragraph style dt (in dl)

List Contents paragraph style dd (in dl)

Horizontal Rule paragraph style hr

Citation text style cite

Definition text style dfn

Emphasis text style em

Example text style samp

Source Text text style code

Strong Emphasis text style strong

Teletype text style tt

OOo Writer style OOo Writer class XHTML element

User entry text style kbd

Variable text style var

bold hard formatting attribute b

italics hard formatting attribute i

fixed pitch font hard formatting attribute tt

superscript hard formatting attribute sup

subscript hard formatting attribute sub

So by using these styles only, you will create well-structured XHTML documents. See the docu-
ment sample-xhtml.sxw for an example of how to use this.

Warning: Some elements are not allowed inside pre , so this might in some cases lead to invalid
documents. This will be fixed in a later version of Writer2xhtml.

5 . Using Writer2LaTeX from another Java application
Version 0.5 features a new API to use Writer2LaTeX from another Java application. Please see
the javadoc for the package writer2latex.api for details.

Here's a simple example8 showing how to convert a file to LaTeX using a custom configuration
(excluding exception handling):

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.util.Enumeration;

import writer2latex.api.*;

import writer2latex.util.Config;

// Create a LaTeX converter

ConverterFactory factory = new ConverterFactory();

Converter converter =

factory.createConverter("application/x-latex");

// Create a configuration

Config config = new Config();

config.read(new FileInputStream("myconfig.xml"));

8The handling of the configuration will change in version 1.0.

config.setOption("inputencoding","latin1");

converter.setConfig(config);

// Convert the document

ConverterResult result =

converter.convert(new FileInputStream("mydocument.odt"),

"mydocument.tex");

// Write the files

Enumeration docEnum = dataOut.getDocumentEnumeration();

while (docEnum.hasMoreElements()) {

OutputFile docOut = (OutputFile) docEnum.nextElement();

FileOutputStream fos =

new FileOutputStream(docOut.getFileName());

docOut.write(fos);

fos.flush();

fos.close();

}

6 . Troubleshooting
If you have to convert a large document, you could get the following error message :

Exception in thread "main" java.lang.OutOfMemoryError: Java heap
space

In that case, you need to manually increase the memory available to the java virtual machine,
for example using the following command to convert your document:

java -Xmx128M -jar writer2latex.jar bigFile.sxw out.tex

In the example, the heap size is set to 128 Megabyte of RAM. If you still get the “heap space”
error, try setting the available memory to 256 or 512 Megabyte (assuming that your computer
has enough physical RAM).

A few memory optimizations are planned for version 1.0, which should make it possible to
convert a wider range of documents without increasing the heap size in java.

	Introduction
	Installation
	Using Writer2LaTeX and Writer2BibTeX
	Using Writer2xhtml and Calc2xhtml
	Using Writer2LaTeX from another Java application
	Troubleshooting

